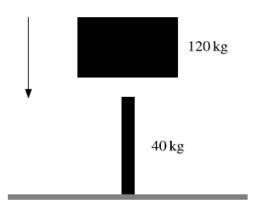

<u>Impulse and Momentum – 2021 Nov AS</u>

1.	Two $k >$ and	2021/Paper_9709/41/No.2 o small smooth spheres A and B , of equal radii and of masses $km \log a$ and $m \log a$ respectively, where 1, are free to move on a smooth horizontal plane. A is moving towards B with speed 6 m s^{-1} . B is moving towards A with speed 2 m s^{-1} . After the collision A and B coalesce and move with ed 4 m s^{-1} .
	(a)	Find k . [3]
		. 89

(b)	Find, in terms of m , the loss of kinetic energy due to the collision.	[2]
		••••

2. Nov/2021/Paper_9709/42/No.7



Particles P and Q have masses m kg and 2m kg respectively. The particles are initially held at rest 6.4 m apart on the same line of greatest slope of a rough plane inclined at an angle α to the horizontal, where $\sin \alpha = 0.8$ (see diagram). Particle P is released from rest and slides down the line of greatest slope. Simultaneously, particle Q is projected up the same line of greatest slope at a speed of $10 \, \mathrm{m \, s^{-1}}$. The coefficient of friction between each particle and the plane is 0.6.

(a)	Show that the acceleration of Q up the plane is $-11.6 \mathrm{m s}^{-2}$.	4]
	Co	
	No.	
(b)	Find the time for which the particles are in motion before they collide.	5]

	*0	
(a)	The particles coalesce on impact	
(c)		
(c)	The particles coalesce on impact. Find the speed of the combined particle immediately after the impact.	[4
(c)		[4
(c)	Find the speed of the combined particle immediately after the impact.	[4
(c)	Find the speed of the combined particle immediately after the impact.	[4
(c)	Find the speed of the combined particle immediately after the impact.	[4
(c)	Find the speed of the combined particle immediately after the impact.	[4
(c)	Find the speed of the combined particle immediately after the impact.	[4
(c)	Find the speed of the combined particle immediately after the impact.	[4
(c)	Find the speed of the combined particle immediately after the impact.	[4

3. Nov/2021/Paper_9709/43/No.1

A metal post is driven vertically into the ground by dropping a heavy object onto it from above. The mass of the object is $120 \, \text{kg}$ and the mass of the post is $40 \, \text{kg}$ (see diagram). The object hits the post with speed $8 \, \text{m s}^{-1}$ and remains in contact with it after the impact.

(a)	Calculate the speed with which the combined post and object moves immediately after the impact [2]
	C° C°
(b)	There is a constant force resisting the motion of magnitude 4800 N.
	Calculate the distance the post is driven into the ground. [3]