
Coordinate Geometry – 2022 AS Nov

1.	March/2022/Paper_9709/12/No.2 A curve has equation $y = x^2 + 2cx + 4$ and a straight line has equation $y = 4x + c$, where c is a constant
	Find the set of values of c for which the curve and line intersect at two distinct points. [5]
	A007

2. March/2022/Paper_9709/12/No.6

The circle with equation $(x + 1)^2 + (y - 2)^2 = 85$ and the straight line with equation y = 3x - 20 are shown in the diagram. The line intersects the circle at A and B, and the centre of the circle is at C.

(a)	Find, by calculation, the coordinates of A and B .	[4]
		10
	√	
	63	
	40.0	

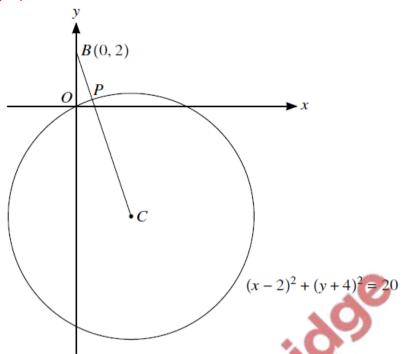
y = 3x - 20 is a tang	ent to the circle.		
		• • • • • • • • • • • • • • • • • • • •	
			•••••
			V
			• · ·
		O.	
	40		
**			
	7 · /		

3.	/2022/Paper_9709/11/No.9 equation of a circle is $x^2 + y^2 + 6x - 2y - 26 = 0$.
	Find the coordinates of the centre of the circle and the radius. Hence find the coordinates of the lowest point on the circle.
	<i>O</i> -

Find the set of values of the constant k for which the line with equation $y = kx - 5$ intersects circle at two distinct points.

4.	The	/2022/Paper_9709/12/No.5 equation of a curve is $y = 4x^2 - kx + \frac{1}{2}k^2$ and the equation of a line is $y = x - a$, where k and a are stants.
	(a)	Given that the curve and the line intersect at the points with x-coordinates 0 and $\frac{3}{4}$, find the values of k and a . [4]
		200

	2'	f k for which the line is a tangent to the cu	
		40	
		7	
	-0		
	20,		
	10.0		
••			


The	The equation of a circle is $x^2 + y^2 + ax + by - 12 = 0$. The points $A(1, 1)$ and $B(2, -6)$ lie on the circle.		
(a)	Find the values of a and b and hence find the coordinates of the centre of the circle. [4]		
	CO		

5. June/2022/Paper_9709/12/No.8

Find the equation of the tangent to the circle at the point A , giving your answer in the form $px + qy = k$, where p , q and k are integers.

6. June/2022/Paper_9709/13/No.7

(a)

The diagram shows the circle with equation $(x-2)^2 + (y+4)^2 = 20$ and with centre *C*. The point *B* has coordinates (0, 2) and the line segment *BC* intersects the circle at *P*.

Find the equation of BC.	[2]
180	

•••••
 •••••
•••••

The point <i>P</i> lies on the line with equation $y = mx + c$, where <i>m</i> and <i>c</i> are positive constants. A curve has equation $y = -\frac{m}{x}$. There is a single point <i>P</i> on the curve such that the straight line is a tangent to the curve at <i>P</i> .	
(a)	Find the coordinates of P , giving the y-coordinate in terms of m . [6]
	100

7. June/2022/Paper_9709/13/No.11

The normal to the curve at P intersects the curve again at the point Q. (b) Find the coordinates of Q in terms of m. [4]