<u>Series and Binomial Expansion – 2022 AS June</u>

1.	March/2022/Paper_9709/12/No.3
	Find the term independent of x in each of the following expansions.

(a)	$\left(3x + \frac{2}{x^2}\right)^6$
	20
	A00X
(b)	$\left(3x + \frac{2}{x^2}\right)^6 (1 - x^3)$

2.	March/2022/Paper_9709/12/No.4 The first term of a geometric progression and the first term of an arithmetic progression are both equato <i>a</i> .
	The third term of the geometric progression is equal to the second term of the arithmetic progression
	The fifth term of the geometric progression is equal to the sixth term of the arithmetic progression.
	Given that the terms are all positive and not all equal, find the sum of the first twenty terms of the arithmetic progression in terms of a . [6]
	60

3.	June/2022/Paper_9709/11/No.2 The thirteenth term of an arithmetic progression is 12 and the sum of the first 30 terms is -15 .	
	Find the sum of the first 50 terms of the progression.	[5]
	400	
	•••	

4.	June/	2022/Paper_9709/11/No.3	
	The	coefficient of x^4 in the expansion of $\left(2x^2 + \frac{k^2}{x}\right)^5$ is a . The coefficient of x^2 in the expansion of	of
	(2k)	$(a-1)^4$ is b.	
	(a)	Find a and b in terms of the constant k .	3]
		100×	
		•	

Given that $a + b = 216$, find the possible values of k.	[3
499	

5.	June/2022/Paper_9709/12/No.1 The coefficient of x^4 in the expansion of $(3 + x)^5$ is equal to the coefficient of x^2 in the expansion of
	$\left(2x+\frac{a}{x}\right)^6$.
	Find the value of the positive constant <i>a</i> . [4]
	.00

The second and third terms of a geometric progression are 10 and 8 respectively.	
Find the sum to infinity.	[4]
20	
:89	
200	

6. June/2022/Paper_9709/12/No.2

(a)	Find the value of the constant k .	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	

The coefficient of x^3 in the expansion of $\left(p + \frac{1}{p}x\right)^4$ is 144.	
Find the possible values of the constant p .	[4]
AQ ************************************	
	,

8. June/2022/Paper_9709/13/No.1

An the	arithmetic progression has first term 4 and common difference d . The sum of the first n terms of progression is 5863.
(a)	Show that $(n-1)d = \frac{11726}{n} - 8$. [1]
	, 39
(b)	Given that the n th term is 139, find the values of n and d , giving the value of d as a fraction. [4]

9. June/2022/Paper_9709/13/No.3