Impulse and Momentum- 2022 June AS

1. March/2022/Paper_9709/42/No.7

A bead, *A*, of mass 0.1 kg is threaded on a long straight rigid wire which is inclined at $\sin^{-1}(\frac{7}{25})$ to the horizontal. *A* is released from rest and moves down the wire. The coefficient of friction between *A* and the wire is μ . When *A* has travelled 0.45 m down the wire, its speed is 0.6 m s⁻¹.

(a) Show that $\mu = 0.25$. [6]

Another bead, B, of mass 0.5 kg is also threaded on the wire. At the point where A has travelled 0.45 m down the wire, it hits B which is instantaneously at rest on the wire. A is brought to instantaneous rest in the collision. The coefficient of friction between B and the wire is 0.275.

Find the time from when the collision occurs until A collides with B again.	
·····	
×0*	
60	
~	

2. June/2022/Paper_9709/41/No.7

Two particles *A* and *B*, of masses 0.4 kg and 0.2 kg respectively, are moving down the same line of greatest slope of a smooth plane. The plane is inclined at 30° to the horizontal, and *A* is higher up the plane than *B*. When the particles collide, the speeds of *A* and *B* are 3 m s^{-1} and 2 m s^{-1} respectively. In the collision between the particles, the speed of *A* is reduced to 2.5 m s^{-1} .

[2]

(a) Find the speed of *B* immediately after the collision.

•••					 	••••	 	•••		 	••••	••••										 ••••	 					•••													
					 		 	•••		 	••••	••••										 ••••	 						••••	••••	••••			••••							
					 		 			 	••••											 	 																		
					 		 			 												 	 							2											
																												Ô													
																								k		0			/												
•••					 	••••	 	•••		 		••••												S															••••	••••	
•••	••••	••••	••••	••••	 ••••	••••	 ••••	•••	••••	 ••••	••••	••••	•••	••••	•••	•••	•••	•••	•••	•••	,	 •••	 	•••	•••	•••	••••	•••	•••	•••	•••	•••	•••	•••	•••	••••	••••	••••	•••	•••	••••

After the collision, when B has moved 1.6 m down the plane from the point of collision, it hits a barrier and returns back up the same line of greatest slope. B hits the barrier 0.4 s after the collision, and when it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44 s after their previous collision, and they then coalesce on impact.

(b) Show that the speed of *B* immediately after it hits the barrier is 0.5 m s^{-1} . Hence find the speed of the combined particle immediately after the second collision between *A* and *B*. [7]

·····
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
***

.....

## **3.** June/2022/Paper_9709/42/No.1

Small smooth spheres *A* and *B*, of equal radii and of masses 5 kg and 3 kg respectively, lie on a smooth horizontal plane. Initially *B* is at rest and *A* is moving towards *B* with speed  $8.5 \text{ m s}^{-1}$ . The spheres collide and after the collision *A* continues to move in the same direction but with a quarter of the speed of *B*.

(a)	Find the speed of $B$ after the collision.	[3]
		<i>O</i> ,
		N N
	20	-
	<u> </u>	
	60	
<b>(b</b> )	Find the loss of kinetic energy of the system due to the collision.	[2]

## **4.** June/2022/Paper_9709/43/No.1

Two particles P and Q, of masses 0.3 kg and 0.2 kg respectively, are at rest on a smooth horizontal plane. P is projected at a speed of  $4 \text{ m s}^{-1}$  directly towards Q. After P and Q collide, Q begins to move with a speed of  $3 \text{ m s}^{-1}$ .

	-	
(a)	Find the speed of $P$ after the collision.	[2]
	C	
	er the collision, $Q$ moves directly towards a third particle $R$ , of mass $m  \text{kg}$ , which i ne. The two particles $Q$ and $R$ coalesce on impact and move with a speed of $2  \text{m s}^{-1}$	
(b)	Find <i>m</i> .	[2]