Kinematics – 2022 June AS

1. March/2022/Paper_9709/42/No.2

A particle P is projected vertically upwards from horizontal ground with speed u m s ⁻¹ . P reaches a maximum height of 20 m above the ground.		
(a)	Find the value of u . [2]	
	10	
	Co	
(b)	Find the total time for which P is at least 15 m above the ground. [3]	

A cyclist starts from rest at a fixed point O and moves in a straight line, before coming to rest k seconds later. The acceleration of the cyclist at time t s after leaving O is a m s ⁻² , where $a = 2t^{-\frac{1}{2}} - \frac{3}{5}t^{\frac{1}{2}}$ for $0 < t \le k$.		
(a)	Find the value of k . [4]	
	100	

(b)	Find the maximum speed of the cyclist. [3]	

2. March/2022/Paper_9709/42/No.6

Find an exp travelled by to rest.	pression for the d the cyclist from t	isplacement from	m O in terms on she reaches he	of t. Hence find er maximum spe	I the total distance ed until she come [4]
			W.		
			VII.		
		6	9		
		90			
	AQ.	0.			
		ÿ			
**					
				•••••	
•••••				•••••	

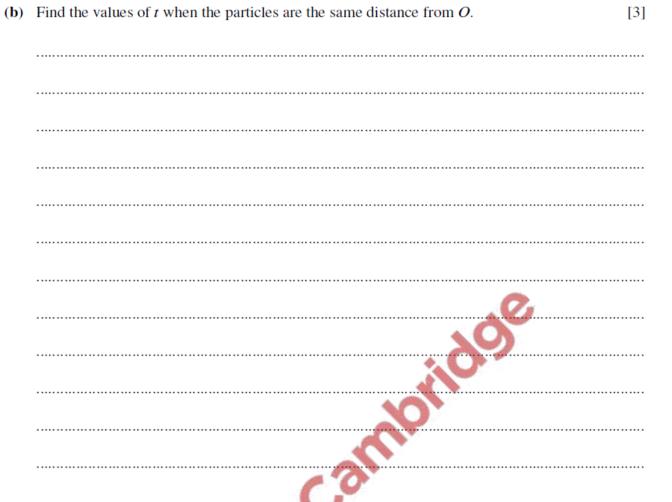
reac	ar starts from rest and moves in a straight line with constant acceleration for a distance thing a speed of $25 \mathrm{ms^{-1}}$. The car then travels at this speed for $400 \mathrm{m}$, before decelerating est over a period of $5 \mathrm{s}$.	e of 200 m, guniformly
(a)	Find the time for which the car is accelerating.	[2]
(b)	Sketch the velocity–time graph for the motion of the car, showing the key points.	[2]
(c)	Find the average speed of the car during its motion.	[2]

3. June/2022/Paper_9709/41/No.1

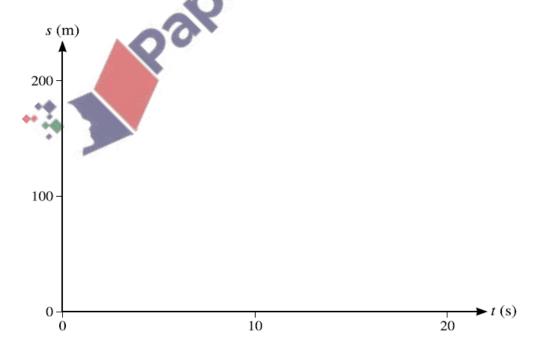
4.	June/2022/	/Paper_	_9709/41/No.6	
----	------------	---------	---------------	--

A particle starts from a point O and moves in a straight line. The velocity $v \, \text{m s}^{-1}$ of the particle at time $t \, \text{s}$ after leaving O is given by

$$v = k(3t^2 - 2t^3),$$


where k is a constant.

Verify that the particle returns to O when $t = 2$.	
. 0	7


(b)	It is given that the acceleration of the particle is $-13.5\mathrm{ms^{-2}}$ for the positive value of t at which $v=0$.
	Find k and hence find the total distance travelled in the first two seconds of motion. [6]
	10.0

A particle A , moving along a straight horizontal track with constant speed $8 \mathrm{ms^{-1}}$, passes a fixed point O . Four seconds later, another particle B passes O , moving along a parallel track in the same direction as A . Particle B has speed $20 \mathrm{ms^{-1}}$ when it passes O and has a constant deceleration of $2 \mathrm{ms^{-2}}$. B comes to rest when it returns to O .		
(a) Find expressions, in terms of t, for the displacement from O of each particle t seconds after B passes O.[3]		
60		

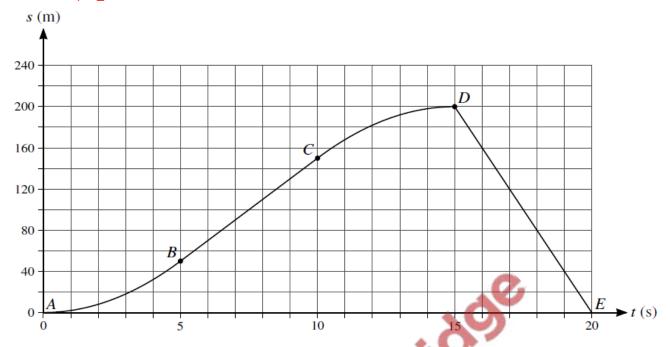
5. June/2022/Paper_9709/42/No.4

(c) On the given axes, sketch the displacement-time graphs for both particles, for values of t from 0 to 20.

6.	June/2022/Paper	9709/42/No.7
Ο.	Julicy 2022/1 apci	_3703/42/110.7

A particle P moves in a straight line. The velocity $v \, \text{m s}^{-1}$ at time t seconds is given by

$$v = 0.5t$$
 for $0 \le t \le 10$,
 $v = 0.25t^2 - 8t + 60$ for $10 \le t \le 20$.


Sh	ow that there is an instantaneous change in the acceleration of the particle at $t = 10$.	[3]
••••	<i>^</i>	
••••		
••••		
••••	*	
••••		
• • • • • • • • • • • • • • • • • • • •		

Find the total distance covered by P in the interval $0 \le t \le 20$.	[6]
	•••••
.0,	
69	

A particle P is projected vertically upwards from horizontal ground. P reaches a maximum height of 45 m. After reaching the ground, P comes to rest without rebounding.		
(a)	Find the speed at which P was projected. [2]	
	.89	
(b)	Find the total time for which the speed of P is at least $10 \mathrm{m s^{-1}}$. [3]	
()		

7. June/2022/Paper_9709/43/No.2

8. June/2022/Paper_9709/43/No.3

The displacement of a particle moving in a straight line is s metres at time t seconds after leaving a fixed point O. The particle starts from rest and passes through points P, Q and R, at times t = 5, t = 10 and t = 15 respectively, and returns to O at time t = 20. The distances OP, OQ and OR are SO in SO in and SO in respectively.

The diagram shows a displacement-time graph which models the motion of the particle from t = 0 to t = 20. The graph consists of two curved segments AB and CD and two straight line segments BC and DE.

Find the speed of the particle between $t = 5$ and $t = 10$.	[1]

Find the acceleration of the particle between $t = 0$ and $t = 5$, given that it is con	
<u></u>	
Find the average speed of the particle during its motion.	
A O O Y	

9.	June/2022/Paper_	9709/43/No.7
	Julic/2022/1 apci_	_3703/ +3/110.7

A particle P moves in a straight line through a point O. The velocity $v \, \text{m s}^{-1}$ of P, at time $t \, \text{s}$ after passing O, is given by

$$v = \frac{9}{4} + \frac{b}{(t+1)^2} - ct^2,$$

where *b* and *c* are positive constants. At t = 5, the velocity of *P* is zero and its acceleration is $-\frac{13}{12}$ m s⁻².

(a)	Show that $b = 9$ and find the value of c .	[5]

of motion.	[5
100	
••	