Work, Energy and Power – 2022 June AS

		rane is used to raise a block of mass 600 kg vertically upwards at a constant speed through a height 5 m. There is a resistance to the motion of the block, which the crane does 10 000 J of work to
	(a)	Find the total work done by the crane. [2]
		.0
		Co
	(b)	Given that the average power exerted by the crane is 12.5 kW, find the total time for which the block is in motion.

at a constant speed. There are resistance forces on the car and on the trailer, and the total work done against the resistance forces in a distance of $50\mathrm{m}$ is $40000\mathrm{J}$. The engine of the car is doing no work and the tow-bar is light and rigid.		
Find the value of m . [3]		
. 29		
resistance force on the trailer is 200 N.		
Find the tension in the tow-bar between the car and the trailer. [2]		

2. March/2022/Paper_9709/42/No.3 A car of mass *m* kg is towing a trailer of mass 300 kg down a straight hill inclined at 3° to the horizontal

3.	Two tracl A at	Two racing cars A and B are at rest alongside each other at a point O on a straight horizontal test track. The mass of A is $1200 \mathrm{kg}$. The engine of A produces a constant driving force of $4500 \mathrm{N}$. When A arrives at a point P its speed is $25 \mathrm{ms^{-1}}$. The distance OP is d m. The work done against the resistance force experienced by A between O and P is $75000 \mathrm{J}$.		
	(a)	Show that $d = 100$. [3]		
		.89		

Car B starts off at the same instant as car A. The two cars arrive at P simultaneously and with the same speed. The engine of B produces a driving force of 3200 N and the car experiences a constant resistance to motion of 1200 N.

(b)	Find the mass of B .	[3]
	307	
(c)	Find the steady speed which B can maintain when its engine is working at the same rate as i at P .	it is

A car of mass $900 \mathrm{kg}$ is moving up a hill inclined at $\sin^{-1} 0.12$ to the horizontal. The initial speed of the car is $11 \mathrm{m s^{-1}}$. After $12 \mathrm{s}$, the car has travelled $150 \mathrm{m}$ up the hill and has speed $16 \mathrm{m s^{-1}}$. The engine of the car is working at a constant rate of $24 \mathrm{kW}$.		
(a)	Find the work done against the resistive forces during the 12 s. [5]	
	6 TO	
	- 20	
	430	

4. June/2022/Paper_9709/42/No.6

The car then travels along a straight horizontal road. There is a resistance to the motion of the car of (1520 + 4v) N when the speed of the car is v m s⁻¹. The car travels at a constant speed with the engine working at a constant rate of 32 kW.

b)	Find this speed.	[3]
		••••••
	~~~	
	120	
	***	
	***	

A cyclist is riding along a straight horizontal road. The total mass of the cyclist and her bicycle is $70\mathrm{kg}$ . At an instant when the cyclist's speed is $4\mathrm{ms^{-1}}$ , her acceleration is $0.3\mathrm{ms^{-2}}$ . There is a constant resistance to motion of magnitude $30\mathrm{N}$ .		
(a)	Find the power developed by the cyclist. [3]	

**5.** June/2022/Paper_9709/43/No.5

The cyclist comes to the top of a hill inclined at  $5^{\circ}$  to the horizontal. The cyclist stops pedalling and freewheels down the hill (so that the cyclist is no longer supplying any power). The magnitude of the resistance force remains at  $30\,\mathrm{N}$ . Over a distance of  $d\,\mathrm{m}$ , the speed of the cyclist increases from  $6\,\mathrm{m\,s^{-1}}$  to  $12\,\mathrm{m\,s^{-1}}$ .

<b>(b)</b>	Find the change in kinetic energy.	[2]
(c)		
(c)	Use an energy method to find $d$ .	[3]
	_0	