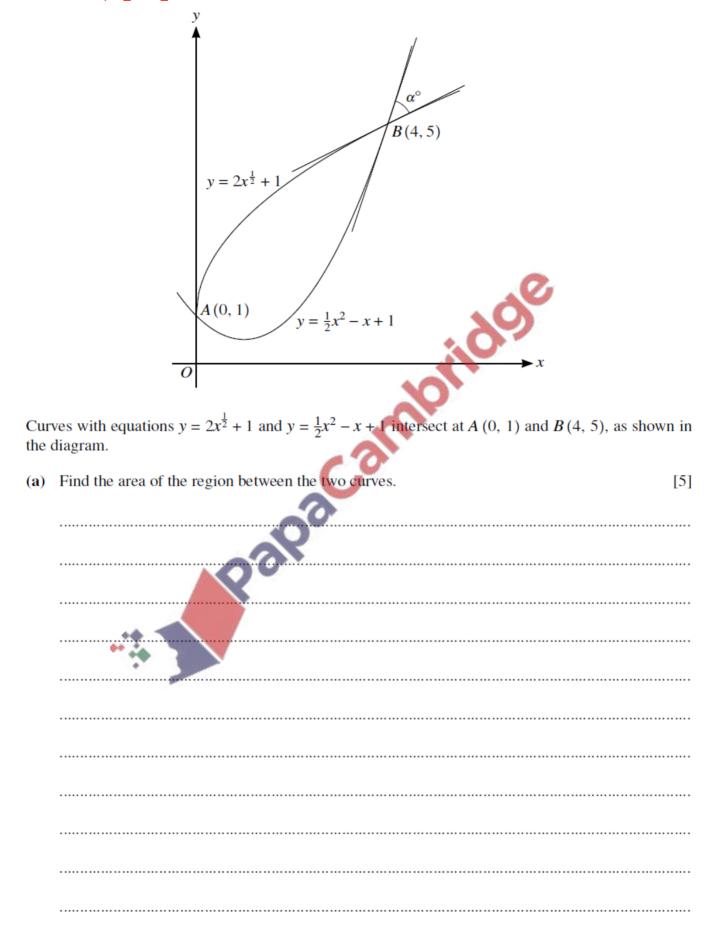
Differentiation and Integration – 2022 AS Nov

1. Nov/2022/Paper_9709_11/No.2

The equation of a curve is such that $\frac{dy}{dx} = 12(\frac{1}{2}x - 1)^{-4}$. It is given that the curve passes through the point *P*(6, 4).

[2]

(a) Find the equation of the tangent to the curve at *P*.

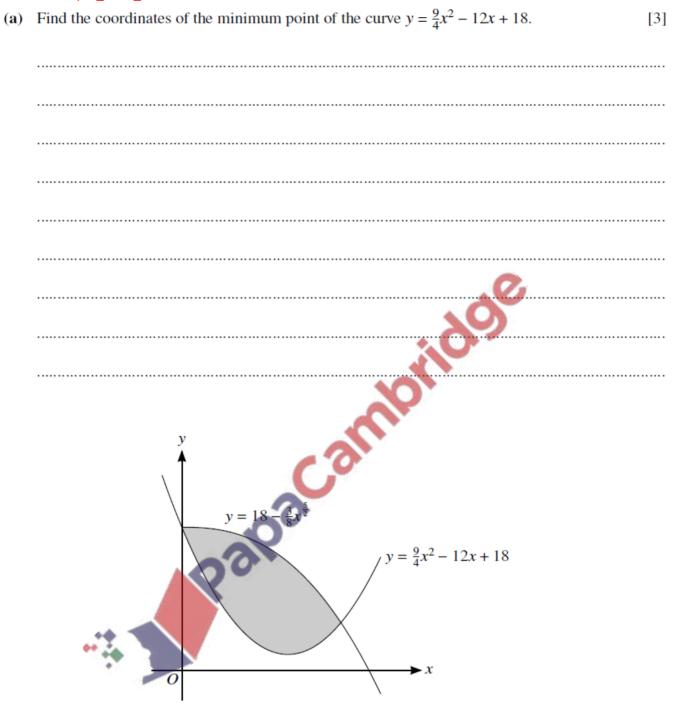

	N N N N N N N N N N N N N N N N N N N
	00
(b)	Find the equation of the curve. [4]
(b)	Find the equation of the curve. [4]
(b)	Find the equation of the curve. [4]
(b)	Find the equation of the curve. [4]
(b)	
(b)	Find the equation of the curve [4]
(b)	
(b)	

2. Nov/2022/Paper_9709_11/No.3

A curve has equation $y = ax^{\frac{1}{2}} - 2x$, where x > 0 and *a* is a constant. The curve has a stationary point at the point *P*, which has *x*-coordinate 9.

Find the <i>y</i> -coordinate of <i>P</i> .	[5]
	<u>s</u>
	?
<u> </u>	
00	
00	

3. Nov/2022/Paper_9709_11/No.10


The acute angle between the two tangents at *B* is denoted by α° , and the scales on the axes are the same.

(b)	Find α .	[5]
	<u> </u>	
	1 00	

4.	Nov/	2022/Paper_9709_12/No.8
	The	equation of a curve is such that $\frac{dy}{dx} = 3x^{\frac{1}{2}} - 3x^{-\frac{1}{2}}$. The curve passes through the point (3, 5).
	(a)	Find the equation of the curve. [4]

	Ċ
	*
(c)	State the set of values of x for which y increases as x increases. [1]
	6

5. Nov/2022/Paper_9709_12/No.11

The diagram shows the curves with equations $y = \frac{9}{4}x^2 - 12x + 18$ and $y = 18 - \frac{3}{8}x^{\frac{5}{2}}$. The curves intersect at the points (0, 18) and (4, 6).

(b) Find the area of the shaded region.

[5]

			Ø
		SC	
		·····	
A point <i>P</i> is moving increasing at a consta	along the curve y nt rate of 2 units p	$= 18 - \frac{3}{8}x^{\frac{5}{2}}$ in such a way the per second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	$x = 18 - \frac{3}{8}x^{\frac{5}{2}}$ in such a way the per second of <i>P</i> is changing when $x = 4$.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of
increasing at a consta	nt rate of 2 units p	er second.	at the <i>x</i> -coordinate of

.....

6. Nov/2022/Paper_9709_13/No.4

A large industrial water tank is such that, when the depth of the water in the tank is *x* metres, the volume $V \text{ m}^3$ of water in the tank is given by $V = 243 - \frac{1}{3}(9-x)^3$. Water is being pumped into the tank at a constant rate of 3.6 m³ per hour.

Find the rate of increase of the depth of the water when the depth is 4m, giving your answer in cm per minute. [5]

\sim

7. Nov/2022/Paper_9709_13/No.7

The curve y = f(x) is such that $f'(x) = \frac{-3}{(x+2)^4}$.

(a) The tangent at a point on the curve where x = a has gradient $-\frac{16}{27}$.

Find the possible values of *a*. [4] 444

\sim
<u>C</u>