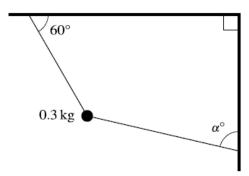
Forces and Equilibrium – 2022 Nov AS

1. Nov/2022/Paper 9709 41/No.1

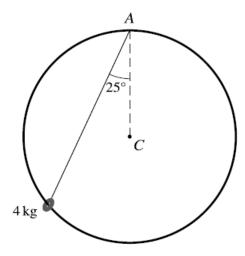
A cyclist is riding a bicycle along a straight horizontal road AB of length 50 m. The cyclist starts from rest at A and reaches a speed of $6 \,\mathrm{m\,s^{-1}}$ at B. The cyclist produces a constant driving force of magnitude 100 N. There is a resistance force, and the work done against the resistance force from A to B is 3560 J.


Find the total mass of the cyclist and bicycle.	[3]
O ₄	
807	

on a smooth horizontal plane. The distance between B and C is 2.1 m. A is projected directly towards B with speed $2 \mathrm{ms^{-1}}$. After A collides with B the speed of A is reduced to $0.6 \mathrm{ms^{-1}}$, still moving in the same direction.		
(a)	Show that the speed of B after the collision is $1.05 \mathrm{ms^{-1}}$. [2]	
	er the collision between A and B , B moves directly towards C . Particle B now collides with C .	
Afte	er this collision, the two particles coalesce and have a combined speed of 0.5 m s ⁻¹ .	
(b)	Find m . [2]	

Three particles A, B and C of masses 0.3 kg, 0.4 kg and m kg respectively lie at rest in a straight line

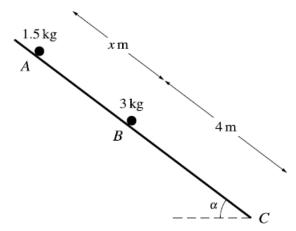
2. Nov/2022/Paper_9709_41/No.6


3. Nov/2022/Paper_9709_42/No.3

A particle of mass $0.3\,kg$ is held at rest by two light inextensible strings. One string is attached at an angle of 60° to a horizontal ceiling. The other string is attached at an angle α° to a vertical wall (see diagram). The tension in the string attached to the ceiling is $4\,N$.

Find the tension in the string which is attached to the wall and find the value of α .	[6]
. 69	
500	
	•••••
	•••••

4. Nov/2022/Paper_9709_43/No.3



A ring of mass 4kg is threaded on a smooth circular rigid wire with centre C. The wire is fixed in a vertical plane and the ring is kept at rest by a light string connected to A, the highest point of the circle. The string makes an angle of 25° to the vertical (see diagram).

Find the tension in the string and the magnitude of the normal reaction of the wire on the ring. [6]
.60
100

5. Nov/2022/Paper_9709_43/No.7

(a)

Particles of masses 1.5 kg and 3 kg lie on a plane which is inclined at an angle of α to the horizontal, where $\tan \alpha = \frac{3}{4}$. The section of the plane from A to B is smooth and the section of the plane from B to C is rough. The 1.5 kg particle is held at rest at A and the 3 kg particle is in limiting equilibrium at B. The distance AB is x m and the distance BC is 4 m (see diagram).

Show that the coefficient of friction between the particle at <i>B</i> and the plane is 0.75.	
	•
Co	•
	•
	•

The $1.5\,\mathrm{kg}$ particle is released from rest. In the subsequent motion the two particles collide and coalesce. The time taken for the combined particle to travel from B to C is $2\,\mathrm{s}$. The coefficient of friction between the combined particle and the plane is still 0.75.

(b)	Find x . [6]
	- 20
	120
(c)	Find the total loss of energy of the particles from the time the $1.5\mathrm{kg}$ particle is released until the combined particle reaches C .