<u>Impulse and Momentum – 2022 Nov AS</u>

1.	Nov/2022/Paper_9709_41/No.2 Small smooth spheres A and B , of equal radii and of masses 6 kg and 2 kg respectively, lie on a smooth horizontal plane. Initially A is moving towards B with speed 5 m s ⁻¹ and B is moving towards A with speed 3 m s ⁻¹ . After the spheres collide, both A and B move in the same direction and the difference in the speeds of the spheres is 2 m s ⁻¹ .
	Find the loss of kinetic energy of the system due to the collision. [5]
	**

	ith speed $2 \mathrm{ms^{-1}}$. After A collides with B the speed of A is reduced to $0.6 \mathrm{ms^{-1}}$, still moving in same direction.
(a)	Show that the speed of B after the collision is $1.05 \mathrm{ms^{-1}}$.
	or the collision between A and B , B moves directly towards C . Particle B now collides with C .
Afte	er this collision, the two particles coalesce and have a combined speed of 0.5 m s ⁻¹ .
(b)	Find m . [2]

Three particles A, B and C of masses 0.3 kg, 0.4 kg and m kg respectively lie at rest in a straight line on a smooth horizontal plane. The distance between B and C is 2.1 m. A is projected directly towards

2. Nov/2022/Paper_9709_42/No.6

				•••••	
					••••••
					•••••
				<u> </u>	
				9	
			70.		
		6.0			
		20			
		5			
	80				
••					
					•••••
					•••••