Differentiation and Integration – 2023 June AS Math 9709

1. June/2023/Paper_9709/11/No.9

Water is poured into a tank at a constant rate of 500 cm³ per second. The depth of water in the tank, *t* seconds after filling starts, is *h* cm. When the depth of water in the tank is *h* cm, the volume, $V \text{ cm}^3$, of water in the tank is given by the formula $V = \frac{4}{3}(25 + h)^3 - \frac{62500}{3}$.

[3]


(a) Find the rate at which h is increasing at the instant when h = 10 cm.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<u> </u>
***

(b) At another instant, the rate at which h is increasing is 0.075 cm per second.

Find the value of $V$ at this instant.	[3]
	,





- (b) A triangle is formed from the tangent to the curve at *B*, the normal to the curve at *B* and the x-axis. Find the area of this triangle. [6] ... .... ... ..... .... ..... ..... .... ..... . . . . . . . . . . . . . . . . ..... .... .... 4 ... ۵ -... ...

3.	June	/2023/Paper_9709/11/No.11	
	The	e equation of a curve is such that $\frac{dy}{dx} = 6x^2 - 30x + 6a$ , where <i>a</i> is a positive constant.	The curve
	has	a stationary point at $(a, -15)$ .	
	(a)	Find the value of <i>a</i> .	[2]
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	(b)	Determine the nature of this stationary point.	[2]

5

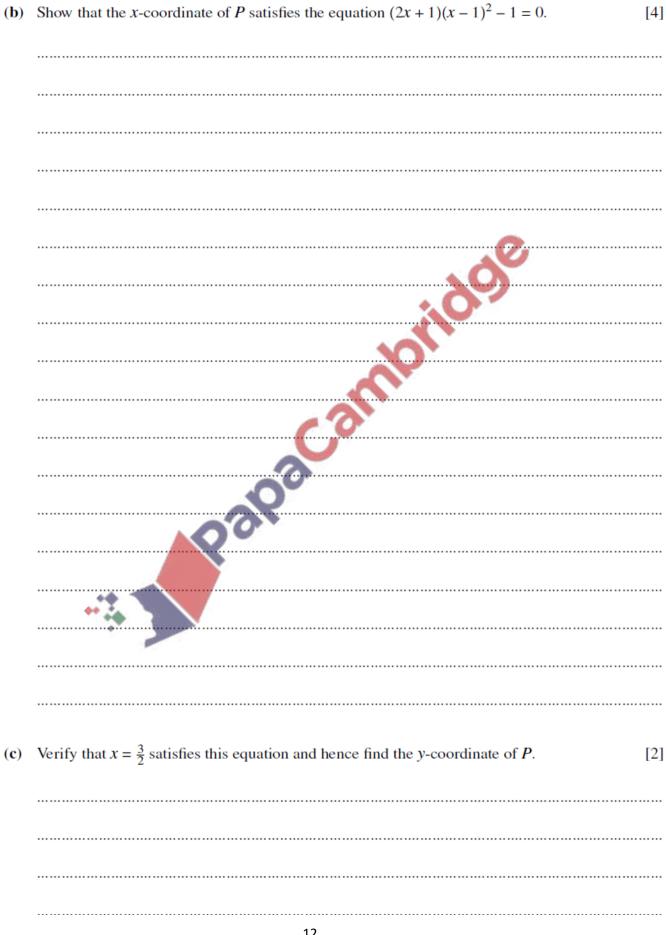
	\sim
	<u> </u>
(d)	Find the coordinates of any other stationary points on the curve. [2]

4. June/2023/Paper_9709/12/No.1 The equation of a curve is such that $\frac{dy}{dx} = \frac{4}{(x-3)^3}$ for x > 3. The curve passes through the point (4, 5). Find the equation of the curve. [3] 4.0

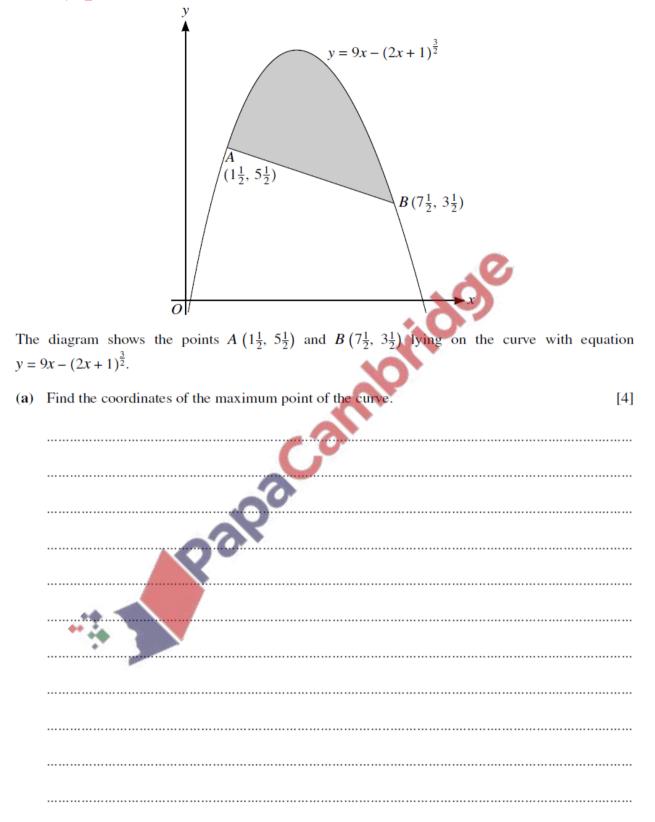
6. June/2023/Paper_9709/12/No.11 The equation of a curve is

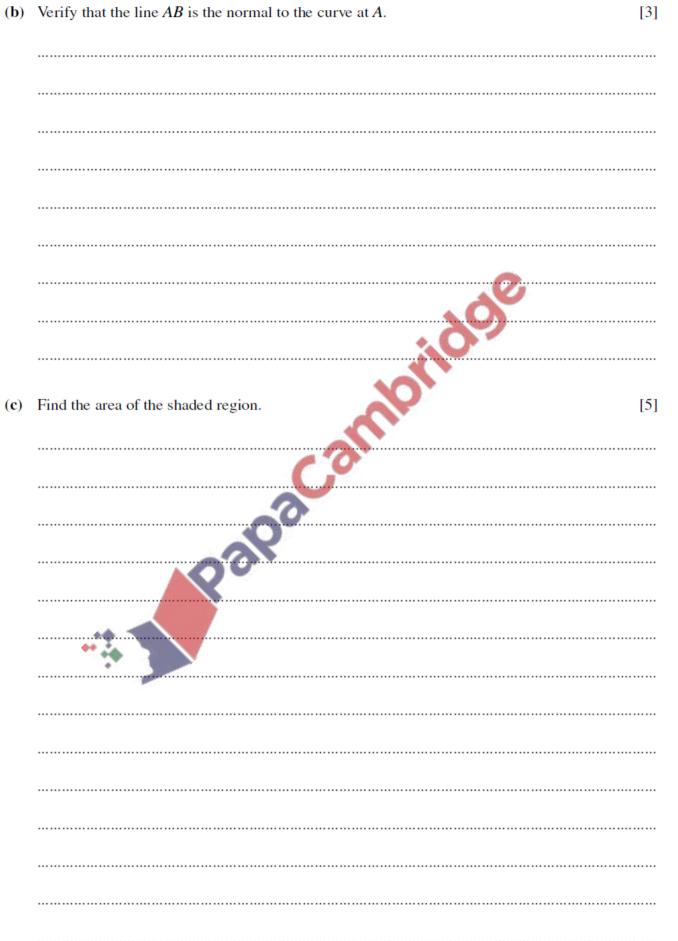
$$y = k\sqrt{4x+1} - x + 5$$
,

where k is a positive constant.


(a)	Find $\frac{dy}{dx}$.	[2]
	<u>~</u> ?	
(b)	Find the <i>x</i> -coordinate of the stationary point in terms of <i>k</i> .	[2]
		•••••

to the editive makes an angle of tail (2) with the positive <i>x</i> -axis.	[-1]
	••••
\sim	
<u>~~</u>	
	••••
	••••
	• • • •


(c) Given that k = 10.5, find the equation of the normal to the curve at the point where the tangent to the curve makes an angle of $\tan^{-1}(2)$ with the positive *x*-axis. [4]


Jun A	e/2023/Paper_9709/13/No.9 curve which passes through (0, 3) has equation $y = f(x)$. It is given that $f'(x) = 1 - \frac{2}{(x-1)^3}$.
	Find the equation of the curve. $(x - 1)^3$
	.0,
	6
	00

The tangent to the curve at (0, 3) intersects the curve again at one other point, P.

8. June/2023/Paper_9709/13/No.10

