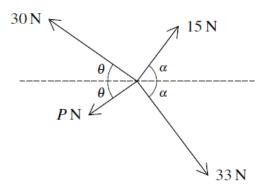
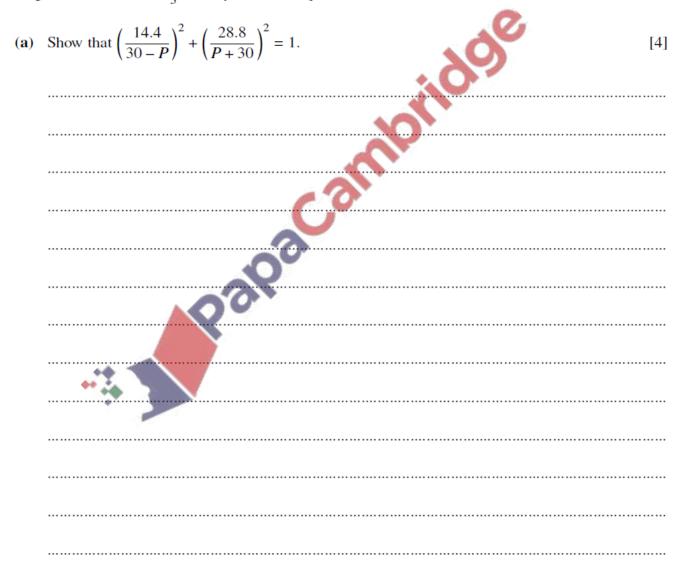

Forces and Equilibrium – 2023 June AS Math 9709

1. June/2023/Paper_9709/41/No.5

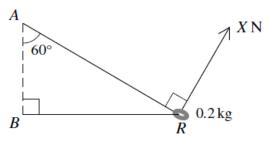


Four coplanar forces act at a point. The magnitudes of the forces are FN, 10N, 50N and 40N. The directions of the forces are as shown in the diagram.


(a)	Given that the forces are in equilibrium, find the value of F and the value of θ .	[6]

(h)	Given instead that $F = 10\sqrt{2}$ and $\theta = 45$, find the direction and the exact magnitude the resultant
(0)	force. $[3]$

2. June/2023/Paper_9709/42/No.3


Coplanar forces of magnitudes 30 N, 15 N, 33 N and *P* N act at a point in the directions shown in the diagram, where $\tan \alpha = \frac{4}{3}$. The system is in equilibrium.

(b)	Verify that $P = 6$ satisfies this equation and find the value of θ . [2]
	$\mathbf{\mathcal{G}}$

.....

3. June/2023/Paper_9709/43/No.3

A smooth ring *R* of mass 0.2 kg is threaded on a light string *ARB*. The ends of the string are attached to fixed points *A* and *B* with *A* vertically above *B*. The string is taut and angle $ABR = 90^{\circ}$. The angle between the part *AR* of the string and the vertical is 60°. The ring is held in equilibrium by a force of magnitude *X*N, acting on the ring in a direction perpendicular to *AR* (see diagram).

Calculate the tension in the string and the value of X .	[5]
	.0
10	
~	
0	
**	