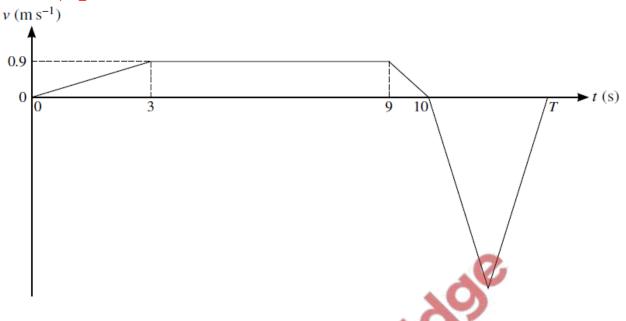
Kinematics – 2023 June AS Math 9709

	$e/2023/Paper_9709/41/No.2$ particle <i>P</i> of mass 0.4 kg is projected vertically upwards from horizontal ground with speed 10 m s ⁻¹ .
(a)	Find the greatest height above the ground reached by <i>P</i> . [2]
	<u> </u>
gro	then P reaches the ground again, it bounces vertically upwards. At the first instant that it hits the bound, P loses 7.2 J of energy. Find the time between the first and second instants at which P hits the ground. [4]
	<u>s</u>


2. June/2023/Paper_9709/41/No.3

A particle moves in a straight line starting from rest. The displacement s m of the particle from a fixed point O on the line at time t s is given by

$$s = t^{\frac{5}{2}} - \frac{15}{4}t^{\frac{3}{2}} + 6.$$

Find the value of *s* when the particle is again at rest. [4] 44 4 25

3. June/2023/Paper_9709/41/No.4

The velocity of a particle at time ts after leaving a fixed point O is $v m s^{-1}$. The diagram shows a velocity-time graph which models the motion of the particle. The graph consists of 5 straight line segments. The particle accelerates to a speed of $0.9 m s^{-1}$ in a period of 3 s, then travels at constant speed for 6 s, and then comes instantaneously to rest 1 s later. The particle then moves back and returns to rest at O at time T s.

Find the distance travelled by the particle in the first 10s of its motion. [2]]
00	
	•
	Find the distance travelled by the particle in the first 10 s of its motion. [2

(c)	Given instead that the greatest speed of the particle is 3 m s^{-1} , find the value of T and hence find the average speed of the particle for the whole of the motion. [4]
	<u>~</u>
	<u> </u>

[2]

4. June/2023/Paper_9709/42/No.6

A particle *P* starts at rest and moves in a straight line from a point *O*. At time *t* s after leaving *O*, the velocity of *P*, $v \text{ m s}^{-1}$, is given by $v = bt + ct^{\frac{3}{2}}$, where *b* and *c* are constants. *P* has velocity 8 m s^{-1} when t = 4 and has velocity 13.5 m s^{-1} when t = 9.

(a)	Show that $b = 3$ and $c = -0.5$.	[1]
	<u>v</u>	
(b)	Find the acceleration of P when $t = 1$.	[2]
	G	
	**	

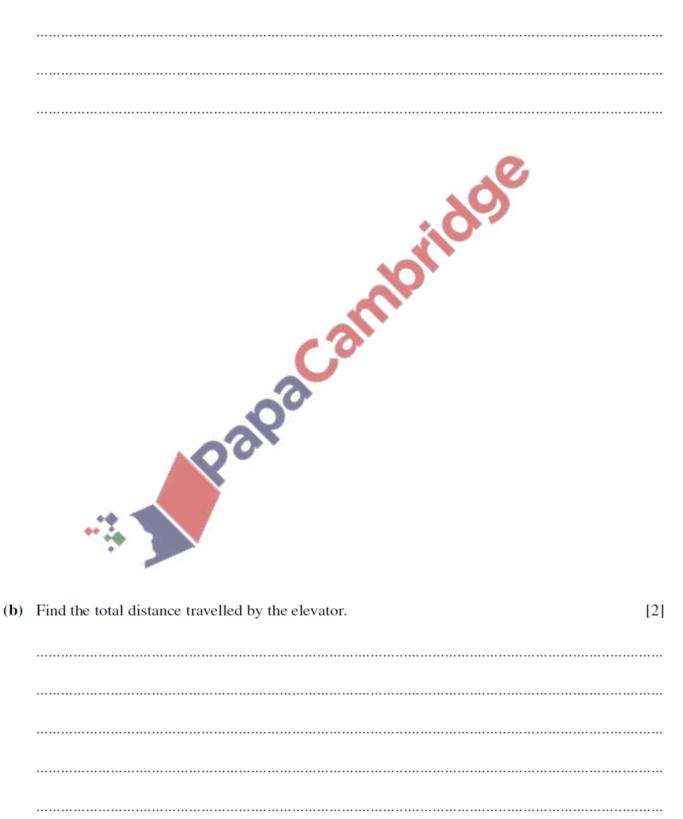
(c) Find the positive value of t when P is at instantaneous rest and find the distance of P from O at this instant.
[5]

	<u> </u>
(d)	Find the speed of P at the instant it returns to Q . [3]
	<u> </u>

5. June/2023/Paper_9709/43/No.5

A particle starts from rest from a point *O* and moves in a straight line. The acceleration of the particle at time *t* s after leaving *O* is $a \text{ m s}^{-2}$, where $a = kt^{\frac{1}{2}}$ for $0 \le t \le 9$ and where *k* is a constant. The velocity of the particle at t = 9 is 1.8 m s^{-1} .

(a)	Show that $k = 0.1$. [3]
	0
	Q.
F	(1, 0)
For	$t > 9$, the velocity $v \text{ m s}^{-1}$ of the particle is given by $v = 0.2(t - 9)^2 + 1.8$.
(b)	Show that the distance travelled in the first 9 seconds is one tenth of the distance travelled between $t = 9$ and $t = 18$. [4]


(c)	Find the greatest acceleration of the particle during the first 10 seconds of its motion. [3]
	\mathbf{N}
	60

.....

6. June/2023/Paper_9709/43/No.6

An elevator is pulled vertically upwards by a cable. The elevator accelerates at $0.4 \,\mathrm{m\,s^{-2}}$ for 5 s, then travels at constant speed for 25 s. The elevator then decelerates at $0.2 \,\mathrm{m\,s^{-2}}$ until it comes to rest.

(a) Find the greatest speed of the elevator and hence draw a velocity-time graph for the motion of the elevator.

The mass of the elevator is 1200 kg and there is a crate of mass *m* kg resting on the floor of the elevator.

(c)	Given that the tension in the cable when the elevator is decelerating is 12250 N, find the value of <i>m</i> .
	<u>so</u>
	<u></u>
(d)	Find the greatest magnitude of the force exerted on the crate by the floor of the elevator, and star
	its direction.
	*
	**