
Newton's Laws of Motion – 2023 June AS Math 9709

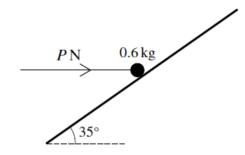
1. June/2023/Paper_9709/41/No.6

Two particles P and Q, of masses 0.2 kg and 0.1 kg respectively, are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley at B which is attached to two inclined planes. Particle P lies on a smooth plane AB which is inclined at 60° to the horizontal. Particle Q lies on a plane BC which is inclined at an angle of θ ° to the horizontal. The string is taut and the particles can move on lines of greatest slope of the two planes (see diagram).

(a)	It is given that $\theta = 60$, the plane BC is rough and the coefficient of friction between Q and the
	plane BC is 0.7. The particles are released from rest.

Determine whether the particles move.	[4]
**	

subsequent motion the tension in the string is $(\sqrt{3} - 1)$ N.	
Find the magnitude of the acceleration of P as it moves on the plane, and find the value of θ .	4]
<u>Co</u>	

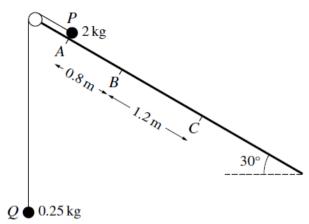

(b) It is given instead that the plane BC is smooth. The particles are released from rest and in the

(a)	Initially the road is horizontal and he runs at a constant speed of $3\mathrm{ms^{-1}}$. The athlete produces a constant power of $60\mathrm{W}$.
	Find the resistive force which acts on the athlete. [1]
(b)	The athlete then runs up a 150 m section of the road which is inclined at 0.8° to the horizontal. The speed of the athlete at the start of this section of road is 3 m s ⁻¹ and he now produces a constant driving force of 24 N. The total resistive force which acts on the athlete along this section of road has constant magnitude 13 N.
	Use an energy method to find the speed of the athlete at the end of the 150 m section of road. [6]
	CO
	100

2. June/2023/Paper_9709/42/No.4

An athlete of mass 84 kg is running along a straight road.

3. June/2023/Paper_9709/42/No.5



A particle of mass $0.6 \,\mathrm{kg}$ is placed on a rough plane which is inclined at an angle of 35° to the horizontal. The particle is kept in equilibrium by a horizontal force of magnitude PN acting in a vertical plane containing a line of greatest slope (see diagram). The coefficient of friction between the particle and plane is 0.4.

Find the least possible value of P .	[6]
	10
A0'0'	

4. June/2023/Paper_9709/42/No.7

(a)

Two particles P and Q, of masses 2 kg and 0.25 kg respectively, are connected by a light inextensible string that passes over a fixed smooth pulley. Particle P is on an inclined plane at an angle of 30° to the horizontal. Particle Q hangs below the pulley. Three points A, B and C lie on a line of greatest slope of the plane with AB = 0.8 m and BC = 1.2 m (see diagram).

Particle P is released from rest at A with the string taut and slides down the plane. During the motion of P from A to C, Q does not reach the pulley. The part of the plane from A to B is rough, with coefficient of friction 0.3 between the plane and P. The part of the plane from B to C is smooth.

(1)	Find the acceleration of P between A and B .	[4]
	CO	
	~~?	
	100	••••
		••••
		••••
		••••
		••••
		••••

	(ii) Hence, find the speed of P at C .	[5]
		O .
(b)	Find the time taken for P to travel from A to C .	[4]

the trailer are connected by a tow-bar which is horizontal, light and rigid. There is a resistance force of FN on the car and a resistance force of 200 N on the trailer. The driving force of the car's engine is 3200 N, the acceleration of the car is 1.25 m s ⁻² and the tension in the tow-bar is 300 N.
Find the value of m and the value of F . [4]

A car of mass $1500 \,\mathrm{kg}$ is towing a trailer of mass $m \,\mathrm{kg}$ along a straight horizontal road. The car and

5. June/2023/Paper_9709/43/No.2