Coordinate Geometry – 2023 AS Mathematics 9709 | 1. | Nov | /2023 | /Paper | 9709 | /11 | /No 2 | |----|------|-------|---------|------|------------|-------------| | | INUV | 12023 | / raper | 3103 | <i>/</i> , | / I N O . Z | A line has equation y = 2cx + 3 and a curve has equation $y = cx^2 + 3x - c$, where c is a constant. Showing all necessary working, determine which of the following statements is correct. | A | The line and curve intersect only for a particular set of values of c . | | |-------|---|-------| | В | The line and curve intersect for all values of c . | | | C | The line and curve do not intersect for any values of c . | [4] | | | | | | ••••• | | ••••• | | | | | | | | | | | | | | ••••• | | •••• | | ••••• | 10 | ••••• | | ••••• | | ••••• | | ••••• | (3) | ••••• | | ••••• | | | | ••••• | 40" | | | ••••• | A0 '0' | ••••• | | ••••• | | | | ••••• | *** | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | •••• | | | | | | | | ••••• | | | | | ## **2.** Nov/2023/Paper_9709/11/No.11 The diagram shows the circle with equation $(x-4)^2 + (y+1)^2 = 40$. Parallel tangents, each with gradient 1, touch the circle at points A and B. | Find the equation of the fine AB, giving the answer in the form $y = mx + c$. | [3] | |--|--------| | | | | 60 | | | | | | | | | 10 0 | | | | | | | | | | | | | ••••• | | | •••••• | | | | | | | | | | | | | | (b) | Find the coordinates of A , giving each coordinate in surd form. | | | | |------------|---|-----------------|--|--| 10.0 | | | | | | | | | | | | | | | | | (c) | Find the equation of the tangent at A, giving the answer in the form $y = mx + c$ | where c is in | | | | (-) | surd form. | [2] | The | e coordinates of points A , B and C are $(6, 4)$, $(p, 7)$ and $(14, 18)$ respectively, where p is e line AB is perpendicular to the line BC . | a constant. | |-----|---|-------------| | (a) | Given that $p < 10$, find the value of p . | [4] | . 29 | ••••• | **3.** Nov/2023/Paper_9709/12/No.11 A circle passes through the points A, B and C. (b) Find the equation of the circle. [3] (c) Find the equation of the tangent to the circle at C, giving the answer in the form dx + ey + f = 0, where d, e and f are integers. | Find the y-coordinates of A and B , expressing your answers in terms of surds. | [2 | |--|---| | | ••••• | | | | | | | | | | | 0, | •••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | | | | •••••• | | Find the equation of the circle which has AB as its diameter. | [2 | | | | | | ••••• | Find the equation of the circle which has AB as its diameter. | ## **5.** March/2023/Paper_9709/12/No.1 A line has equation y = 3x - 2k and a curve has equation $y = x^2 - kx + 2$, where k is a constant. Show that the line and the curve meet for all values of k. [4] ## **6.** March/2023/Paper_9709/12/No.5 Points A(7, 12) and B lie on a circle with centre (-2, 5). The line AB has equation y = -2x + 26. Find the coordinates of B. [6]