
Differentiation – 2023 AS Mathematics 9709

1. Nov/2023/Paper_9709/11/No.3

The diagram shows a cubical closed container made of a thin elastic material which is filled with water and frozen. During the freezing process the length, x cm, of each edge of the container increases at the constant rate of 0.01 cm per minute. The volume of the container at time t minutes is $V \text{ cm}^3$.

Find the rate of increase of <i>V</i> when $x = 20$.	[3]
<u> </u>	

2. Nov/2023/Paper_9709/11/No.10

A curve has a stationary point at (2, -10) and is such that $\frac{d^2y}{dx^2} = 6x$.

(a)	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[3]
		•••••
	<u></u>	
(b)	Find the equation of the curve.	[3]
		•••••
	•	

(c)	Find the coordinates of the other stationary point and determine its nature.	[3]
		•••••
		•••••
(d)	Find the equation of the tangent to the curve at the point where the curve crosses the	y-axis. [2]
	<u></u>	
		•••••

3. Nov/2023/Paper_9709/12/No.10

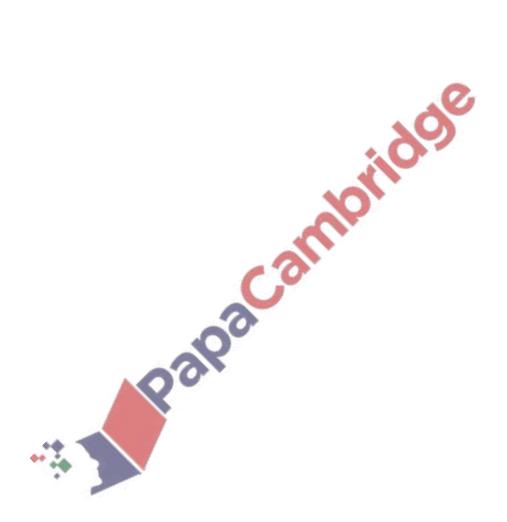
The	The equation of a curve is $y = f(x)$, where $f(x) = (4x - 3)^{\frac{5}{3}} - \frac{20}{3}x$.	
(a)	Find the <i>x</i> -coordinates of the stationary points of the curve and determine their nature. [6]	
	<u> </u>	
	<u> </u>	
	<u> </u>	

(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	State the set of values for which the function f is increasing. [1]
(b)	

4. Nov/2023/Paper_9709/13/No.6

A line has equation $y = 6x - c$ and a curve has equation $y = cx^2 + 2x - 3$, where <i>c</i> is a constant. The line is a tangent to the curve at point <i>P</i> .	
Find the possible values of c and the corresponding coordinates of P .	[7]
SO S	
<u>so</u>	
62	
R	
**	

5. Nov/2023/Paper_9709/13/No.9

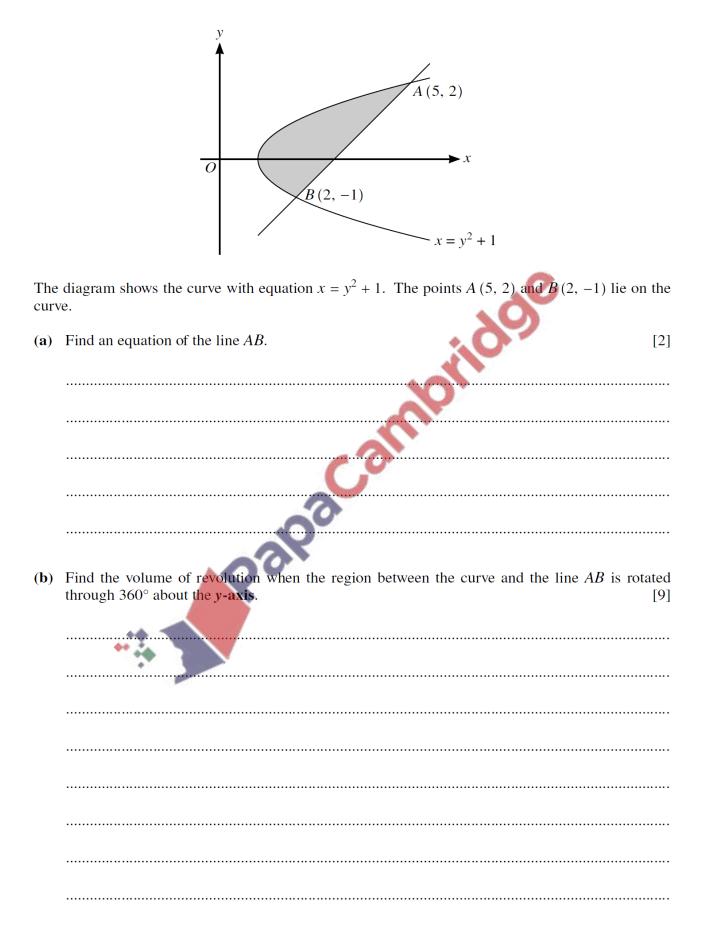

A curve has equation $y = 2x^{\frac{1}{2}} - 1$.

(a)	Find the equation of the normal to the curve at the point <i>A</i> (4, 3), giving your answer in the form $y = mx + c$. [3]
	NO NO
	N N
	point is moving along the curve $y = 2x^{\frac{1}{2}} - 1$ in such a way that at A the rate of increase of the pordinate is 3 cm s^{-1} .
(b)	Find the rate of increase of the <i>y</i> -coordinate at <i>A</i> . [2]
Atz	A the moving point suddenly changes direction and speed, and moves down the normal in such a
way	that the rate of decrease of the y-coordinate is constant at $5 \mathrm{cm}\mathrm{s}^{-1}$.
(c)	As the point moves down the normal, find the rate of change of its <i>x</i> -coordinate. [3]

6. March/2023/Paper_9709/12/No.3

A curve has equation $y = \frac{1}{60}(3x + 1)^2$ and a point is moving along the curve.

Find the *x*-coordinate of the point on the curve at which the *x*- and *y*-coordinates are increasing at the same rate. [4]


7. March/2023/Paper_9709/12/No.10

At the point (4, -1) on a curve, the gradient of the curve is $-\frac{3}{2}$. It is given that $\frac{dy}{dx} = x^{-\frac{1}{2}} + k$, where k is a constant.

(a)	Show that $k = -2$.	[1]
(b)	Find the equation of the curve.	[4]
	<u>C</u>	
	<u></u>	

	<u>xo</u>
	N N N N N N N N N N N N N N N N N N N
	<u>7</u> 0
(d)	Determine the nature of the stationary point. [2]
	*

[3]

<u>(?</u>
