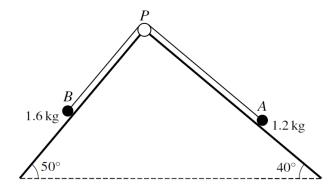
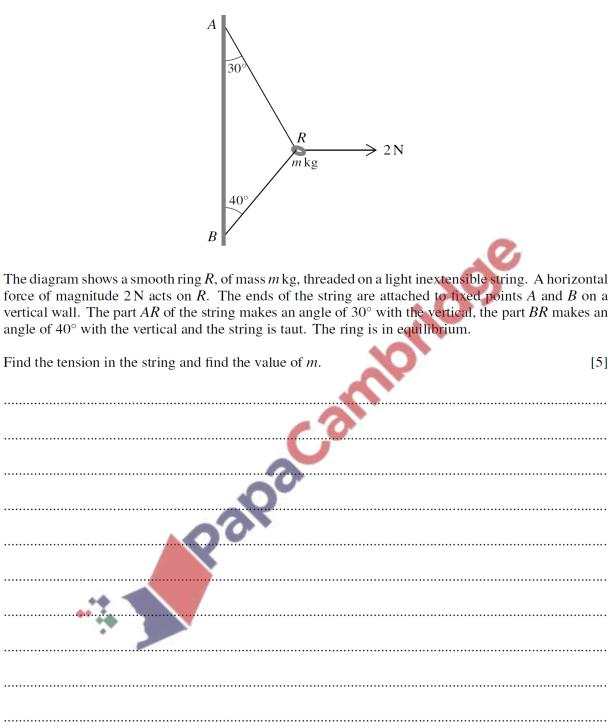
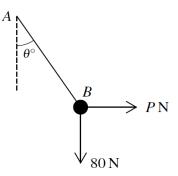

Forces and equilibrium – 2023 AS Mathematics 9709


1. Nov/2023/Paper_9709/41/No.2

A particle of mass 2.4 kg is held in equilibrium by two light inextensible strings, one of which is attached to point *A* and the other attached to point *B*. The strings make angles of 35° and 40° with the horizontal (see diagram).

Find the tension in each of the two strings.	[5]
	2
\sim	
09	
20	
	••••••

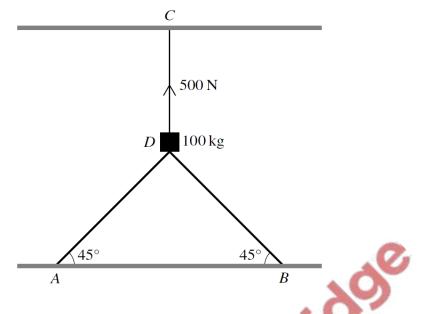

2. Nov/2023/Paper_9709/41/No.5


The diagram shows a particle *A*, of mass 1.2 kg, which lies on a plane inclined at an angle of 40° to the horizontal and a particle *B*, of mass 1.6 kg, which lies on a plane inclined at an angle of 50° to the horizontal. The particles are connected by a light inextensible string which passes over a small smooth pulley *P* fixed at the top of the planes. The parts *AP* and *BP* of the string are taut and parallel to lines of greatest slope of the respective planes. The two planes are rough, with the same coefficient of friction, μ , between the particles and the planes.

Find the value of μ for which the system is in limiting equilibrium.	[7]
<u>(</u> ?	
<u> </u>	

3. Nov/2023/Paper_9709/42/No.2

4. Nov/2023/Paper_9709/43/No.5


A light string *AB* is fixed at *A* and has a particle of weight 80N attached at *B*. A horizontal force of magnitude *P*N is applied at *B* such that the string makes an angle θ° to the vertical (see diagram).

(a)	It is given that $P = 32$ and the system is in equilibrium.
	Find the tension in the string and the value of θ . [4]
	<u>_</u>
	<u>s</u>

has weight 80 N.	-
Find the value of P and the value of θ .	[4]
	<u> </u>
	0'
00	
00	
*	
** 3	

(b) It is given instead that the tension in the string is 120N and that the particle attached at *B* still has weight 80N.

5. March/2023/Paper_9709/42/No.5

The diagram shows a block D of mass 100 kg supported by two sloping struts AD and BD, each attached at an angle of 45° to fixed points A and B respectively on a horizontal floor. The block is also held in place by a vertical rope CD attached to a fixed point C on a horizontal ceiling. The tension in the rope CD is 500 N and the block rests in equilibrium.

(a) Find the magnitude of the force in each of the struts AD and BD.

[3]

Papaco

A horizontal force of magnitude FN is applied to the block in a direction parallel to AB.

(b) Find the value of F for which the magnitude of the force in the strut AD is zero.

[3]

Papacampriloge