<u>Kinematics – 2023 AS Mathematics 9709</u>

1. Nov/2023/Paper_9709/41/No.3

The diagram shows the velocity-time graph for the motion of a bus. The bus starts from rest and accelerates uniformly for 8 seconds until it reaches a speed of $12.6\,\mathrm{m\,s^{-1}}$. The bus maintains this speed for 40 seconds. It then decelerates uniformly in two stages. Between 48 and 62 seconds the bus decelerates at $a\,\mathrm{m\,s^{-2}}$ and between 62 and 70 seconds it decelerates at $2a\,\mathrm{m\,s^{-2}}$ until coming to rest.

(a)	Find the distance covered by the bus in the first 8 seconds.	[1]
	.60	
	100	
(b)	Find the value of a.	[3]
		••••
		••••
		••••
		••••

(c)	Find the average speed of the bus for the whole journey. [4]

2. Nov/2023/Paper_9709/41/No.7

A particle moves in a straight line starting from a point O before coming to instantaneous rest at a point X. At time t s after leaving O, the velocity v m s⁻¹ of the particle is given by

$$v = 7.2t^{2}$$
 $0 \le t \le 2$,
 $v = 30.6 - 0.9t$ $2 \le t \le 8$,
 $v = \frac{1600}{t^{2}} + kt$ $8 \le t$,

where k is a constant. It is given that there is no instantaneous change in velocity at t = 8.

Find the distance OX .	[9]
	_
	. 69
100×	

A pa	article A of mass $0.5 \mathrm{kg}$ is projected vertically upwards from horizontal ground with speed $25 \mathrm{ms^{-1}}$.
(a)	Find the speed of A when it reaches a height of 20 m above the ground. [2]
	407
dow	en A reaches a height of 20 m, it collides with a particle B of mass 0.3 kg which is moving mwards in the same vertical line as A with speed $32.5 \mathrm{ms^{-1}}$. In the collision between the two icles, B is brought to instantaneous rest.
(b)	Show that the velocity of A immediately after the collision is $4.5 \mathrm{ms^{-1}}$ downwards. [2]

3. Nov/2023/Paper_9709/42/No.5

•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••

4. Nov/2023/Paper_9709/42/No.7

A particle X travels in a straight line. The velocity of X at time ts after leaving a fixed point O is denoted by v m s⁻¹, where

$$v = -0.1t^3 + 1.8t^2 - 6t + 5.6.$$

The acceleration of *X* is zero at t = p and t = q, where p < q.

(a)	Find the value of p and the value of q . [4]
It is	given that the velocity of X is zero at $t = 14$.
(b)	Find the velocities of X at $t = p$ and at $t = q$, and hence sketch the velocity-time graph for th motion of X for $0 \le t \le 15$.

Find the total distance travelled by X between $t = 0$ and $t = 15$.	[5]
O.	
100	
	•••••

(c)

A particle is projected vertically upwards from horizontal ground with a speed of u m s ⁻¹ . The particle has height s m above the ground at times 3 seconds and 4 seconds after projection.
Find the value of u and the value of s . [3]

5. Nov/2023/Paper_9709/43/No.1

A p <i>a</i> =	article moves in a straight line. At time t s, the acceleration, a m s ⁻² , of the particle is given by $36 - 6t$. The velocity of the particle is 27 m s ⁻¹ when $t = 2$.
(a)	Find the values of t when the particle is at instantaneous rest. [4]
	100
	•••

6. Nov/2023/Paper_9709/43/No.6

Find the total distance the particle travels during the first 12 seconds.	
	•••••
0.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

7. March/2023/Paper_9709/42/No.2

A particle P is projected vertically upwards from horizontal ground with speed $15\,\mathrm{m\,s^{-1}}$.

(a) Find the speed of P when it is 10 m above the ground.

[2]

At the same instant that P is projected, a second particle Q is dropped from a height of 18 m above the ground in the same vertical line as P.

(b) Find the height above the ground at which the two particles collide.

[3]

8. March/2023/Paper_9709/42/No.3

A particle moves in a straight line starting from rest from a point O. The acceleration of the particle at time t s after leaving O is a m s⁻², where $a = 4t^{\frac{1}{2}}$.

(a) Find the speed of the particle when t = 9. [2]

