# Newton's laws of motion-2023 AS Mathematics 9709

1. Nov/2023/Paper\_9709/42/No.4

A particle *P* of mass 0.2 kg lies at rest on a rough horizontal plane. A horizontal force of 1.2 N is applied to *P*.

(a) Given that P is in limiting equilibrium, find the coefficient of friction between P and the plane.

[3]

|     | C?                                                                                                                                                         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | Given instead that the coefficient of friction between $P$ and the plane is 0.3, find the distance travelled by $P$ in the third second of its motion. [4] |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |

### 2. Nov/2023/Paper\_9709/42/No.6

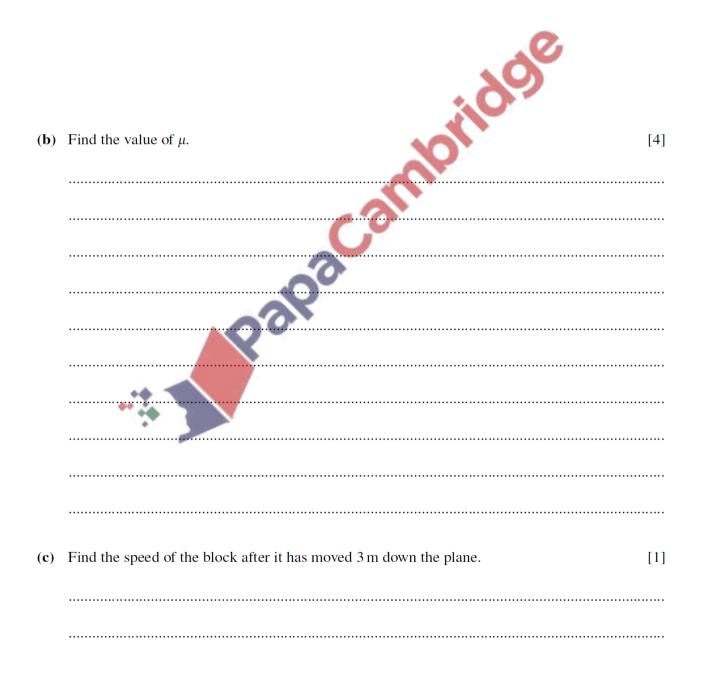
A railway engine of mass 120 000 kg is towing a coach of mass 60 000 kg up a straight track inclined at an angle of  $\alpha$  to the horizontal where sin  $\alpha = 0.02$ . There is a light rigid coupling, parallel to the track, connecting the engine and coach. The driving force produced by the engine is 125000N and there are constant resistances to motion of 22000 N on the engine and 13000 N on the coach.

(a) Find the acceleration of the engine and find the tension in the coupling. [5] . . . . . . . . . . . . . . . . . 

At an instant when the engine is travelling at  $30 \text{ m s}^{-1}$ , it comes to a section of track inclined upwards at an angle  $\beta$  to the horizontal. The power produced by the engine is now 4500000 W and, as a result, the engine maintains a constant speed.

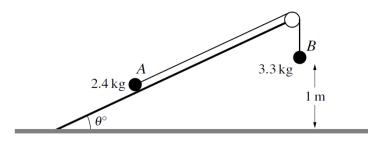
[4]

(b) Assuming that the resistance forces remain unchanged, find the value of  $\beta$ .


| <u></u>  |
|----------|
|          |
|          |
|          |
|          |
| <u> </u> |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |

## 3. Nov/2023/Paper\_9709/43/No.3

A block of mass 8 kg slides down a rough plane inclined at 30° to the horizontal, starting from rest. The coefficient of friction between the block and the plane is  $\mu$ . The block accelerates uniformly down the plane at 2.4 m s<sup>-2</sup>.


[1]

(a) Draw a diagram showing the forces acting on the block.



#### **4.** Nov/2023/Paper\_9709/43/No.7

\_

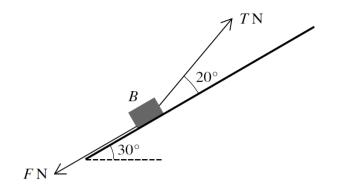


Particles *A* and *B*, of masses 2.4 kg and 3.3 kg respectively, are connected by a light inextensible string that passes over a smooth pulley which is fixed to the top of a rough plane. The plane makes an angle of  $\theta^{\circ}$  with horizontal ground. Particle *A* is on the plane and the section of the string between *A* and the pulley is parallel to a line of greatest slope of the plane. Particle *B* hangs vertically below the pulley and is 1 m above the ground (see diagram). The coefficient of friction between the plane and *A* is  $\mu$ .

| (a) It is given that $\theta = 30$ and the system is in equilibrium with A on the point of moving directly t the plane. | лb |
|-------------------------------------------------------------------------------------------------------------------------|----|
| Show that $\mu = 1.01$ correct to 3 significant figures. [.                                                             | 5] |
|                                                                                                                         |    |
|                                                                                                                         |    |
| <u> </u>                                                                                                                |    |
|                                                                                                                         |    |
| No.                                                                                 |    |
|                                                                                                                         |    |
|                                                                                                                         |    |
|                                                                                                                         |    |
|                                                                                                                         |    |
|                                                                                                                         |    |
|                                                                                                                         |    |
|                                                                                                                         |    |
|                                                                                                                         |    |
|                                                                                                                         |    |
|                                                                                                                         |    |

(b) It is given instead that  $\theta = 20$  and  $\mu = 1.01$ . The system is released from rest with the string taut.

Find the total distance travelled by A before coming to instantaneous rest. You may assume that A does not reach the pulley and that B remains at rest after it hits the ground. [8]


| ~~~      |
|----------|
|          |
| <u>s</u> |
|          |
|          |
| •        |
|          |
|          |
|          |
|          |
|          |
|          |
|          |

## 5. March/2023/Paper\_9709/42/No.4

A toy railway locomotive of mass 0.8 kg is towing a truck of mass 0.4 kg on a straight horizontal track at a constant speed of  $2 \text{ m s}^{-1}$ . There is a constant resistance force of magnitude 0.2 N on the locomotive, but no resistance force on the truck. There is a light rigid horizontal coupling connecting the locomotive and the truck.

| <b>(a)</b> | State the tension in the coupling. [1]                                                                         |
|------------|----------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                |
| (b)        | Find the power produced by the locomotive's engine. [1]                                                        |
|            | Ś                                                                                                              |
|            |                                                                                                                |
| The        | power produced by the locomotive's engine is now changed to 1.2 W.                                             |
| (c)        | Find the magnitude of the tension in the coupling at the instant that the locomotive begins to accelerate. [5] |
|            |                                                                                                                |

6. March/2023/Paper\_9709/42/No.6



A block B, of mass 2 kg, lies on a rough inclined plane sloping at  $30^{\circ}$  to the horizontal. A light rope, inclined at an angle of  $20^{\circ}$  above a line of greatest slope, is attached to B. The tension in the rope is T N. There is a friction force of F N acting on B (see diagram). The coefficient of friction between *B* and the plane is  $\mu$ .

- ne pla (a) It is given that F = 5 and that the acceleration of B up the plane is  $1.2 \text{ ms}^2$ 
  - (i) Find the value of T.

(ii) Find the value of  $\mu$ .

[3]

[3]

(b) It is given instead that  $\mu = 0.8$  and T = 15.

Determine whether *B* will move up the plane.

Papacampildoe