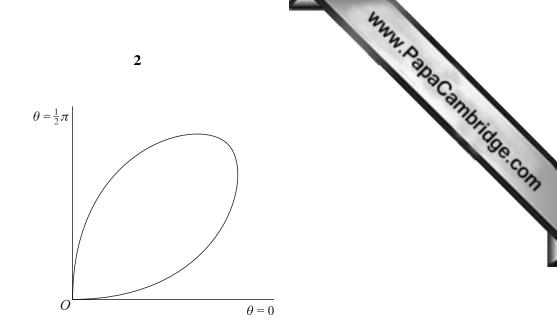
CAM	IBRIDGE INTERNATIONA General Certificate of Advanced Lev	Education 76,
FURTHER MATHEMATICS		9231/01
Paper 1		May/June 2003
Additional materials:	Answer Booklet/Paper Graph paper List of Formulae (MF10)	3 hours
rite your Centre number, c rite in dark blue or black pe ou may use a soft pencil for o not use staples, paper cli nswer all the questions. ive non-exact numerical an degrees, unless a different the end of the examination ne number of marks is give ne use of a calculator is exp esults obtained solely from edit.	nswer Booklet, follow the instruc- candidate number and name on en on both sides of the paper. r any diagrams or graphs. ips, highlighters, glue or correct nswers correct to 3 significant fig t level of accuracy is specified in n, fasten all your work securely en in brackets [] at the end of ea pected, where appropriate.	tion fluid. gures, or 1 decimal place in the case of angles n the question. together. ach question or part question. pporting working or reasoning, will not receive

This document consists of 5 printed pages and 3 blank pages.



The diagram shows one loop of the curve whose polar equation is $r = a \sin 2\theta$, where *a* is a positive constant. Find the area of the loop, giving your answer in terms of *a* and π . [4]

2 Prove by induction that, for all $N \ge 1$,

$$\sum_{n=1}^{N} \frac{n+2}{n(n+1)2^n} = 1 - \frac{1}{(N+1)2^N}.$$
[5]

[3]

3 Let v_1, v_2, v_3, \ldots be a sequence and let

$$u_n = nv_n - (n+1)v_{n+1},$$

for $n = 1, 2, 3, \dots$ Find $\sum_{n=1}^N u_n.$ [2]

In each of the following cases determine whether the series $u_1 + u_2 + u_3 + ...$ is convergent, and justify your conclusion. Give the sum to infinity where this exists.

(i)
$$v_n = n^{-\frac{1}{2}}$$
. [2]

(ii)
$$v_n = n^{-\frac{3}{2}}$$
. [2]

- 4 The curve C has equation $y = \frac{x^2 4}{x 3}$.
 - (i) Find the equations of the asymptotes of *C*.
 - (ii) Draw a sketch of C and its asymptotes. Give the coordinates of the points of intersection of C with the coordinate axes. [4]

[You are not required to find the coordinates of any turning points.]

1

5 The equation

$$8x^3 + 12x^2 + 4x - 1 = 0$$

has roots α , β , γ . Show that the equation with roots $2\alpha + 1$, $2\beta + 1$, $2\gamma + 1$ is

$$y^3 - y - 1 = 0.$$

***.rapaCambridge.com The sum $(2\alpha + 1)^n + (2\beta + 1)^n + (2\gamma + 1)^n$ is denoted by S_n . Find the values of S_3 and S_{-2} . [5]

6 Use de Moivre's theorem to show that

$$\cos 6\theta = 32 \cos^{6} \theta - 48 \cos^{4} \theta + 18 \cos^{2} \theta - 1.$$
 [5]

Hence solve the equation

$$64x^6 - 96x^4 + 36x^2 - 1 = 0,$$

giving each root in the form $\cos k\pi$.

- The variables x and y are related by the equation $x^4 + y^4 = 1$, where 0 < x < 1 and 0 < y < 1. 7
 - (i) Obtain an equation which relates x, y, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, and deduce that

$$\frac{d^2 y}{dx^2} = -\frac{3x^2}{y^7}.$$
 [6]

(ii) Given that $y = b_1$ when $x = a_1$ and that $y = b_2$ when $x = a_2$, where $a_1 < a_2$, prove that the mean value of $\frac{d^3 y}{dx^3}$ with respect to x over the interval $a_1 \le x \le a_2$ is

$$\frac{3(a_1^2b_2^7 - a_2^2b_1^7)}{b_1^7b_2^7(a_2 - a_1)}.$$
[4]

[4]

4

8 The linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ is represented by the matrix **A**, where

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -2 & 3\\ 2 & -1 & -1 & 11\\ 3 & -2 & -3 & 14\\ 4 & -3 & -5 & 17 \end{pmatrix}.$$

Find the rank of A and a basis for the null space of T.

The vector $\begin{pmatrix} 1\\ -2\\ -1\\ -1 \end{pmatrix}$ is denoted by **e**. Show that there is a solution of the equation $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{e}$ of the form $\mathbf{x} = \begin{pmatrix} p\\ q\\ 1\\ 1 \end{pmatrix}$, where *p* and *q* are to be found. [4]

9 The variables *x* and *t*, where x > 0 and $0 \le t \le \frac{1}{2}\pi$, are related by

$$x\frac{d^{2}x}{dt^{2}} + \left(\frac{dx}{dt}\right)^{2} + 5x\frac{dx}{dt} + 3x^{2} = 3\sin 2t + 15\cos 2t,$$

and the variables *x* and *y* are related by $y = x^2$. Show that

$$\frac{d^2 y}{dt^2} + 5\frac{dy}{dt} + 6y = 6\sin 2t + 30\cos 2t.$$
 [3]

Hence find x in terms of t, given that x = 2 and $\frac{dx}{dt} = -\frac{3}{2}$ when t = 0. [10]

10 Find the acute angle between the planes with equations

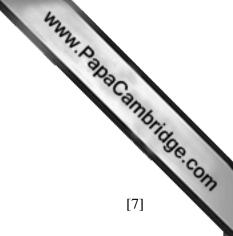
$$x - 2y + z - 9 = 0$$
 and $x + y - z + 2 = 0.$ [3]

The planes meet in the line l, and A is the point on l whose position vector is $p\mathbf{i} + q\mathbf{j} + \mathbf{k}$.

(i) Find
$$p$$
 and q . [2]

(ii) Find a vector equation for l.

The non-coincident planes Π_1 and Π_2 are both perpendicular to *l*. The perpendicular distance from *A* to Π_1 is $\sqrt{14}$ and the perpendicular distance from *A* to Π_2 is also $\sqrt{14}$. Find equations for Π_1 and Π_2 in the form ax + by + cz = d. [5]



[3]

11 Answer only **one** of the following two alternatives.

EITHER

Given that

$$I_n = \int_0^1 x^n \mathrm{e}^{-\alpha x} \,\mathrm{d}x,$$

where α is a positive constant and *n* is a non-negative integer, show that for $n \ge 1$,

$$\alpha I_n = n I_{n-1} - e^{-\alpha}.$$
 [3]

Hence, or otherwise, find the coordinates of the centroid of the finite region bounded by the *x*-axis, the line x = 1 and the curve $y = xe^{-x}$, giving your answers in terms of e. [11]

OR

The vector **e** is an eigenvector of each of the $n \times n$ matrices **A** and **B**, with corresponding eigenvalues λ and μ respectively. Prove that **e** is an eigenvector of the matrix **AB** with eigenvalue $\lambda \mu$. [3]

Find the eigenvalues and corresponding eigenvectors of the matrix C, where

$$\mathbf{C} = \begin{pmatrix} 0 & 1 & 4\\ 1 & 2 & -1\\ 2 & 1 & 2 \end{pmatrix}.$$
 [8]

Verify that one of the eigenvectors of C is an eigenvector of the matrix D, where

$$\mathbf{D} = \begin{pmatrix} -3 & 1 & 1\\ 0 & -2 & 4\\ 0 & 0 & -4 \end{pmatrix}.$$
 [2]

Hence find an eigenvalue of the matrix CD.

[1]

BLANK PAGE

BLANK PAGE

BLANK PAGE