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1 The linear transformation T : �4 → �4 is represented by the matrix


1 5 2 6
2 0 −1 7
3 −1 −2 10
4 10 13 29

 .

Find the dimension of the null space of T. [4]

2 The curve C is defined parametrically by

x = a cos3 t, y = a sin3 t, 0 ≤ t ≤ 1
2
π,

where a is a positive constant. Find the area of the surface generated when C is rotated through one
complete revolution about the x-axis. [5]

3 Given that

α + β + γ = 0, α2 + β2 + γ 2 = 14, α3 + β3 + γ 3 = −18,

find a cubic equation whose roots are α, β , γ . [4]

Hence find possible values for α , β , γ . [2]

4 The curve C has polar equation

r = e
1
5
θ
, 0 ≤ θ ≤ 3

2
π.

(i) Draw a sketch of C. [2]

(ii) Find the length of C, correct to 3 significant figures. [4]

5 Let

SN = N

∑
n=1

(−1)n−1n3.

Find S2N in terms of N, simplifying your answer as far as possible. [4]

Hence write down an expression for S2N+1 and find the limit, as N → ∞, of
S2N+1

N3
. [3]

6 Write down all the 8th roots of unity. [2]

Verify that

(
 − eiθ)(
 − e−iθ) ≡ 
2 − (2 cos θ)
 + 1. [1]
Hence express 
8 − 1 as the product of two linear factors and three quadratic factors, where all
coefficients are real and expressed in a non-trigonometric form. [5]
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7 The curve C has equation

xy + (x + y)5 = 1.

(i) Show that
dy
dx

= −5
6

at the point A (1, 0) on C. [3]

(ii) Find the value of
d2y

dx2
at A. [5]

8 The sequence of real numbers a1, a2, a3, . . . is such that a1 = 1 and

an+1 = (an + 1
an

)λ
,

where λ is a constant greater than 1. Prove by mathematical induction that, for n ≥ 2,

an ≥ 2g(n),
where g(n) = λ n−1. [6]

Prove also that, for n ≥ 2,
an+1

an

> 2(λ−1)g(n). [3]

9 It is given that

I
n
= � 1

0
(1 + x3)−n dx,

where n > 0.

(i) Show that
d
dx
[x(1 + x3)−n] = −(3n − 1)(1 + x3)−n + 3n(1 + x3)−n−1,

and hence, or otherwise, show that

In+1 = 2−n

3n
+ (1 − 1

3n
)In. [5]

(ii) By considering the graph of y = 1

1 + x3
, show that I1 < 1. [2]

(iii) Deduce that I3 < 53
72

. [3]
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10 The curve C has equation

y = x2 + 2x − 3(λx + 1)(x + 4) ,

where λ is a constant.

(i) Find the equations of the asymptotes of C for the case where λ = 0. [4]

(ii) Find the equations of the asymptotes of C for the case where λ is not equal to any of −1, 0, 1
4
, 1

3
.

[3]

(iii) Sketch C for the case where λ = −1. Show, on your diagram, the equations of the asymptotes
and the coordinates of the points of intersection of C with the coordinate axes. [4]

11 The line l1 passes through the point A, whose position vector is 3i − 5j − 4k, and is parallel to the
vector 3i + 4j + 2k. The line l2 passes through the point B, whose position vector is 2i + 3j + 5k,
and is parallel to the vector i − j − 4k. The point P on l

1
and the point Q on l

2
are such that PQ

is perpendicular to both l1 and l2. The plane Π1 contains PQ and l1, and the plane Π2 contains PQ
and l2.

(i) Find the length of PQ. [4]

(ii) Find a vector perpendicular to Π1. [2]

(iii) Find the perpendicular distance from B to Π1. [3]

(iv) Find the angle between Π1 and Π2. [3]
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12 Answer only one of the following two alternatives.

EITHER

The variable y depends on x, and the variables x and t are related by x = et. Show that

x
dy
dx

= dy
dt

and x2 d2y

dx2
= d2y

dt2
− dy

dt
. [5]

(i) Given that y satisfies the differential equation

4x2 d2y

dx2
+ 16x

dy
dx

+ 25y = 50(ln x) − 1,

find a differential equation involving only t and y. [2]

(ii) Show that the complementary function of the differential equation in t and y may be written in
the form

Re
−3

2
t
sin(2t + φ),

where R and φ are arbitrary constants. [3]

(iii) Find a particular integral of the differential equation in t and y. [3]

(iv) Hence find the general solution of the differential equation in x and y. [1]

OR

The matrix A has λ as an eigenvalue with e as a corresponding eigenvector. Show that if A is
non-singular then

(i) λ ≠ 0, [2]

(ii) the matrix A−1 has λ−1 as an eigenvalue with e as a corresponding eigenvector. [2]

The matrices A and B are given by

A = ( 1 −1 2
0 −2 4
0 0 −3

) and B = (A + 4I)−1.

Find a non-singular matrix P, and a diagonal matrix D, such that B = PDP−1. [10]
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