www.papacambridge.com MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/01

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

CCE A EVEL - October/Nevember 2009 9231	Page 2	Mark Scheme: Teachers' version	Syllabus
		GCE A LEVEL – October/November 2009	9231

Mark Scheme Notes

Marks are of the following three types:

- ambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabu
	GCE A LEVEL – October/November 2009	9231

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- www.papaCambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version Syllabus	A er
	GCE A LEVEL – October/November 2009 9231	Star.
		Sam.
(i) MV of y_1	over $0 \le x \le \pi/2 = 2/\pi [x^2 \sin x]_0^{\pi/2}$	OTIL
$= = \pi/2$	2 (AG, CWO)	
(ii) MV of y_2	$x_2 \text{ over } 0 \le x \le \pi/2 = 2/\pi \left[2x \sin x + x^2 \cos x \right]_0^{\pi/2} = 2$	MM. BabaCambrid
	ne relevant vector product, e.g.,	
• • •	$\mathbf{i} + \mathbf{j} + \theta \mathbf{k} = (1 - \theta)\mathbf{i} - (1 + \theta)\mathbf{j} + 2\mathbf{k}$	M1A1
- 12	$-(1+\theta)\mathbf{j}+2\mathbf{k}\mathbf{j}\cdot\mathbf{i}/\sqrt{2\theta^2}+6$	M1
$= \left (1-\theta)/\sqrt{2\theta} \right $	$\theta^2 + 6$	Al
-	$\overline{2}$ to obtain a horizontal equation such as	
$2\theta^2 + 6 = 2(\theta)$ $\Rightarrow \dots \Rightarrow \theta = 0$		M1 A1
$\rightarrow \dots \rightarrow \theta = 0$	-1	A
i) (1,0), (4,9	0)	Bl
(0,4)		Bl
ii) One asyr	nptote is $x = -1$	B1
	+10/(x+1)	MI
Other asy	ymptote: $y = x - 6$	Al
iii) Sketch:		
Axes and Upper br	l asymptotes ranch:	Bl
Correct le	ocation and orientation	Bl
Lower br	ranch correctly located and orientated	Bl
	$\operatorname{st}, \frac{dy}{dt} = 2t - 2\operatorname{sin}t$	
	$2\sin t$ /(1 + cost) esult for $d(dy/dx)/dt$ in terms of t	M1A1 B1
$y^{2}y/dx^{2} = [(2 - 1)^{2})^{2}$	$-2\cos t(1 + \cos t) + \sin t(2t - 2\sin t)]/(1 + \cos t)^{3}$ (AEF)	MIAI
$y^2/dx^2 = 2t \sin \theta$	$nt/(1 + \cos t)^3$ (AG)	Al
	$ of sign of \frac{d^2 y}{dx^2} y(-)/+ > 0; \ 0 < t < \pi : (+)(+)/+ > 0 \implies \frac{d^2 y}{dx^2} > 0, \ \forall \text{ non-zero } t \in (-\pi,\pi) $	M1 A1
•	$/x \implies y^3 - 5y^2 - 9 = 0$	Bl
$= -3/x \implies y$ $\Rightarrow y = \beta y y = \beta y$	$\alpha = \alpha \beta \gamma / x$, $\alpha \beta$ when $x = \alpha$, β , γ , respectively	M1 M1A1
$\gamma + \gamma \alpha + \alpha \beta =$	ous 3 marks: = 5	Bl
$\alpha^2\beta\gamma + \alpha\beta^2\gamma +$	$\alpha\beta\gamma^2 = \alpha\beta\gamma(\alpha + \beta + \gamma) = \alpha\beta\gamma \times 0 = 0$	Bl
βγγαα $β = (αβ)$	$(\gamma)^2 = 9$	B
	$(2 \times 0) = 25$	M1A1
$\Sigma \alpha^2 \beta^2 = 25 - (2\alpha^3 \beta^3 - 5 \Sigma \alpha^2)$		M1A1

Page 5 Mark Scheme: Teachers' version Sy	llabus of er
GCE A LEVEL – October/November 2009	9231 23
$\frac{d}{dx} \left[x^{n-1} \sqrt{4 - x^2} \right] = (n-1) x^{n-2} \sqrt{4 - x^2} - x^n / \sqrt{4 - x^2}$	Vilabus 9231 Apacamphia M
Shows that this preliminary result implies first displayed result (AG)	M
$\left[x^{n-1}\sqrt{4-x^2}\right]_0^1 = 4(n-1)I_{n-2} - nI_n$	M
$\Rightarrow \Rightarrow$ second displayed result (AG)	Al
$I_0 = \pi / 6 \Rightarrow I_2 = \pi / 3 - \sqrt{3} / 2, \ 4I_4 = 12I_2 - \sqrt{3}, \ (all)$	B1B1
$I_4 = \pi - 7\sqrt{3} / 4$	M1A1
OR for last 4 marks:	
$2I_2 = 4.1.\pi/6 - \sqrt{3}$	M
$\Rightarrow I_2 = \pi / 3 - \sqrt{3} / 2$	Al
$\Rightarrow 4I_4 = 4.3\left(\pi / 3 - \sqrt{3} / 2\right) - \sqrt{3}$	Al
$\Rightarrow I_4 = \pi - 7\sqrt{3} / 4$	Al
$64\sin^6\theta = -(z-1/z)^6(z=e^{i\theta})$	M
$= -\left(z^{6} + 1/z^{6}\right) + 6\left(z^{4} + 1/z^{4}\right) - 15\left(z^{2} + 1/z^{2}\right) + 20$	M1A1
$\sin^{6}\theta = 5/16 - (15/32)\cos 2\theta + (3/16)\cos 4\theta - (1/32)\cos 6\theta$	M1A1
$\sin^{6} 2x = 5/16 - (15/32)\cos 4x + (3/16)\cos 8x - (1/32)\cos 12x$	M
Any one of $\int_{0}^{\pi/4} \cos kx dx = 0$ for $k = 1, 2, 3$	BI
Further B1 if all 3 are written down or implied	Bl
$\int_0^{\pi/4} \sin^6 2x dx = 5\pi/64 \text{ or } \pi a/4 \text{ (CWO)}$	Al
OR for last 4 marks	
$I = (1/2) \int_0^{\pi/2} \sin^6 u du = (1/64) \int_0^{\pi/2} (10 - 15\cos 2u + 6\cos 4u - \cos 6u) du$	M
$= (1/64) [10u - 15\sin 2u/2 + 3\sin 4u/2 - \sin 6u/6]_{0}^{\pi/2}$	M1A1
$= 5\pi/64$ (CWO)	Al
(a) $y = \tan x$	B
$\sqrt{1+y_1^2} = \sec x$	M
$s = \int_{0}^{\pi/3} \sec x dx $ (AEF)	Al
$= \left[\ln(\sec x + \tan x) \right]_{0}^{\pi/3} = \dots = \ln\left(2 + \sqrt{3}\right) (AG)$	MIAI
1/2	
(b) $S = 4\pi \int_0^1 (x+3)^{1/2} (1+1/(x+3))^{1/2} dx$ (AEF)	MIAI
$= = 4\pi \int_0^1 (x+4)^{1/2} dx$	A

$$= (8\pi/3) [(x+4)^{3/2}]_0^1$$
A1

$$= \left(8\pi/3\right)\left[5\sqrt{5} - 8\right] (AG)$$
A1

Pa	ge 6	Mark Scheme: Teachers' version	Syllabus er
		GCE A LEVEL – October/November 2009	9231 23
d	v dv		Syllabus 9231 MiA
$x = \frac{d}{d}$	$\frac{y}{x} = \frac{dy}{du}$		101:
Son	ne relevant	, correct intermediate result such as:	8
x^2	$d^2 y/dx^2$	$+x(dy/dx) = d^2y/du^2$	M1A
\Rightarrow	$x^2 \frac{dy^2}{dx^2} = -\frac{1}{2}$	$\frac{d^2 y}{du^2} - \frac{dy}{du} $ (AG)	Al
	$x = e^u to$		
du	$\frac{1}{2} + 4\frac{1}{du} + \frac{1}{du}$	$3y = 30e^{2u} $ (AG)	M1A1
Cor	nplementa	ry function = $Ae^{-u} + Be^{-3u}$	M1A1
		$\operatorname{gral} = 2e^{2u}$	M1A1
		on for y in the x-domain:	
<i>y</i> =	A/x+B	$/x^3 + 2x^2$	A1
) (i)	Area = $(a + b)$	$a^2/2 \int_0^{\pi/3} \sin^2 3\theta d\theta$	M1
		•0	
	$=(a^{2}/4)$	$\int_0^{\pi/3} (1 - \cos 6\theta) d\theta$	Al
	$= \ldots = \pi a$	² /12 (AG)	A1
(ii)	Consider	$s y = a \sin 3\theta \sin \theta$	B1
(11)		$0 \Rightarrow 3\cos 3\theta \sin \theta + \sin 3\theta \cos \theta = 0$	MI
	•	$an 3\theta + 3 \tan \theta = 0 \text{ (AG)}$	A1
(iii)	Uses tan	$3\theta = (3\tan\theta - \tan^3\theta)/(1 - 3\tan^2\theta)$ to obtain $\tan^2\theta = 3/5$	M1A1
	Uses $y =$	$\sin 3\theta \sin \theta$ with $\tan \theta = \sqrt{3/5}$	M1
	Obtains y	y = 9a/16 (Accept 0.5625 <i>a</i> , or 0.563 <i>a</i>)	A1
(iv)	Closed lo	op entirely in the first quadrant with lower end at the pole	
(••)	and clear	ly tangential to the initial line at the pole	B1
	Symmetr	ic about line $\theta = \pi/6$ with correct shape at $(a, \pi/6)$	Bl
	<i></i>	\mathbf{r}	

	Mark Scheme: Teachers' version Sylla	bus a er
	GCE A LEVEL – October/November 2009 923	S1 28C
EITHER		9mg
$H_k: S_k = \sum$	$\sum_{k=1}^{k} n^3 = (1/4)k^2(k+1)^2$ for some k	STE.
$H_k \Longrightarrow S_{k+1} =$	$=(1/4)k^{2}(k+1)^{2}+(k+1)^{3}$	bus 31 Adda Cambrid
= = (1/4)($(k+1)^2(k+2)^2$ so that $H_k \Longrightarrow H_{k+1}$	M1A1
,	true and completes induction argument	Al
$\sum_{n=1}^{N} (20n^3 \downarrow$	$+36n^{2} = 5N^{2}(N+1)^{2} + 6N(N+1)(2N+1)$	M1
$= \ldots = N(N \cdot$	(N+3)(5N+2) (AG)	M1A1
$S_N = N(N +$	$(1)(N+3)(5N+2) + (\mu/2)N(N+1)$	Ml
=N(N+1)($5N^2 + 17N + 6 + \mu/2$	MI
Take $\mu = -1$	2, then $S_N = N^2 (N+1) (5N+17)$ so that $a = 5, b = 17$	Al
$N^{-4}S_N = 5 +$	$-22/N + 17/N^2$, $>5 + 22/N$, $\forall N \ge 1$	M1, A1
$N \ge 18 \Longrightarrow \Lambda$	$V > 17 \Longrightarrow 17 / N^2 < 1/N$	
$\Rightarrow N^{-4}S_N <$	5 + 23/N (AG)	Al
$\det \left(\mathbf{A} + 2\mathbf{I} \right) =$		M1A1
$\det(\mathbf{A}+2\mathbf{I}) =$	$= 0 \Rightarrow a = -8$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	M1A1 A1 M1A1A1
$\det(\mathbf{A} + 2\mathbf{I}) =$	$= 0 \Rightarrow a = -8$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	Al
det $(\mathbf{A} + 2\mathbf{I})$ = Eigenvectors	$= 0 \Rightarrow a = -8$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	Al
det $(\mathbf{A} + 2\mathbf{I}) =$ Eigenvectors (i) $\mathbf{x} \in V =$ $\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{x})$	$= 0 \implies a = -8$ corresponding to -2 and -5: any non-zero scaling of $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\Rightarrow \mathbf{x} \text{ of the form } p\mathbf{e}_1 + q\mathbf{e}_2$ $p\mathbf{e}_1 + q\mathbf{e}_2) = p(\mathbf{A}\mathbf{e}_1) + q(\mathbf{A}\mathbf{e}_2)$	A1 M1A1A1 B1 M1A1
det $(\mathbf{A} + 2\mathbf{I}) =$ Eigenvectors (i) $\mathbf{x} \in V =$ $\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{x})$	= 0 ⇒ a = -8 corresponding to -2 and -5: any non-zero scaling of $\begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ ⇒ x of the form $p\mathbf{e}_1 + q\mathbf{e}_2$	A1 M1A1A1 B1
det $(\mathbf{A} + 2\mathbf{I}) =$ Eigenvectors (i) $\mathbf{x} \in V =$ $\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{a})$ $= -2p\mathbf{e}_1 \cdot$ (ii) $(2\mathbf{i} + 3\mathbf{j})$	$= 0 \implies a = -8$ corresponding to -2 and -5: any non-zero scaling of $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\Rightarrow \mathbf{x} \text{ of the form } p\mathbf{e}_1 + q\mathbf{e}_2$ $p\mathbf{e}_1 + q\mathbf{e}_2) = p(\mathbf{A}\mathbf{e}_1) + q(\mathbf{A}\mathbf{e}_2)$ $-5q\mathbf{e}_2 \in V$ $+ \mathbf{k}) \times (\mathbf{i} - \mathbf{k}) = -3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} \text{ (AEF)}$	A1 M1A1A1 B1 M1A1 A1 M1A1
det $(\mathbf{A} + 2\mathbf{I}) =$ Eigenvectors (i) $\mathbf{x} \in V =$ $\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{a})$ $= -2p\mathbf{e}_1 + \mathbf{A}(\mathbf{a})$ (ii) $(2\mathbf{i} + 3\mathbf{j}) + \mathbf{A}(\mathbf{i} - \mathbf{j}) + \mathbf{A}(\mathbf{i})$	$= 0 \implies a = -8$ corresponding to -2 and -5: any non-zero scaling of $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\Rightarrow \mathbf{x} \text{ of the form } p\mathbf{e}_1 + q\mathbf{e}_2$ $p\mathbf{e}_1 + q\mathbf{e}_2) = p(\mathbf{A}\mathbf{e}_1) + q(\mathbf{A}\mathbf{e}_2)$ $-5q\mathbf{e}_2 \in V$	A1 M1A1A1 B1 M1A1 A1
det $(\mathbf{A} + 2\mathbf{I}) =$ Eigenvectors (i) $\mathbf{x} \in V =$ $\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{a})$ $= -2p\mathbf{e}_1 + \mathbf{A}(\mathbf{a})$ (ii) $(2\mathbf{i} + 3\mathbf{j}) + \mathbf{A}(\mathbf{i} - \mathbf{j}) + \mathbf{A}(\mathbf{i})$ Hence $\mathbf{i} + \mathbf{A}(\mathbf{i}) + \mathbf{A}(\mathbf{i})$	$= 0 \implies a = -8$ corresponding to -2 and -5: any non-zero scaling of $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\Rightarrow \mathbf{x} \text{ of the form } p\mathbf{e}_1 + q\mathbf{e}_2$ $p\mathbf{e}_1 + q\mathbf{e}_2) = p(\mathbf{A}\mathbf{e}_1) + q(\mathbf{A}\mathbf{e}_2)$ $-5q\mathbf{e}_2 \in V$ $+ \mathbf{k}) \times (\mathbf{i} - \mathbf{k}) = -3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} \text{ (AEF)}$ $+ \mathbf{k}) = 11\mathbf{i} + 8\mathbf{j} - 15\mathbf{k} \text{ which is not a scaling of } \mathbf{i} - \mathbf{j} + \mathbf{k}$	A1 M1A1A1 B1 M1A1 A1 M1A1 M1A1 M1
det $(\mathbf{A} + 2\mathbf{I}) =$ Eigenvectors (i) $\mathbf{x} \in V =$ $\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{i})$ $= -2p\mathbf{e}_1 +$ (ii) $(2\mathbf{i} + 3\mathbf{j} +$ $\mathbf{A}(\mathbf{i} - \mathbf{j} +$ Hence $\mathbf{i} +$ OR for t	$= 0 \Rightarrow a = -8$ corresponding to -2 and -5: any non-zero scaling of $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\Rightarrow \mathbf{x} \text{ of the form } p\mathbf{e}_1 + q\mathbf{e}_2$ $p\mathbf{e}_1 + q\mathbf{e}_2) = p(\mathbf{A}\mathbf{e}_1) + q(\mathbf{A}\mathbf{e}_2)$ $-5q\mathbf{e}_2 \in V$ $+ \mathbf{k}) \times (\mathbf{i} - \mathbf{k}) = -3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} \text{ (AEF)}$ $+ \mathbf{k}) \times (\mathbf{i} - \mathbf{k}) = -3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} \text{ (AEF)}$ $+ \mathbf{k}) \times (\mathbf{i} - \mathbf{k}) = -3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} \text{ (AEF)}$ $+ \mathbf{k}) = 11\mathbf{i} + 8\mathbf{j} - 15\mathbf{k} \text{ which is not a scaling of } \mathbf{i} - \mathbf{j} + \mathbf{k}$ $- \mathbf{j} + \mathbf{k} \text{ is not an eigenvector of } \mathbf{A} \text{ (CWO)}$ the last 2 marks $\begin{pmatrix} 4 \\ - \end{pmatrix}$	A1 M1A1A1 B1 M1A1 A1 M1A1 M1A1 M1
det $(\mathbf{A} + 2\mathbf{I}) =$ Eigenvectors (i) $\mathbf{x} \in V =$ $\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{i})$ $= -2p\mathbf{e}_1 +$ (ii) $(2\mathbf{i} + 3\mathbf{j} +$ $\mathbf{A}(\mathbf{i} - \mathbf{j} +$ Hence $\mathbf{i} +$ OR for t	$= 0 \implies a = -8$ corresponding to -2 and -5: any non-zero scaling of $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\Rightarrow \mathbf{x} \text{ of the form } p\mathbf{e}_1 + q\mathbf{e}_2$ $p\mathbf{e}_1 + q\mathbf{e}_2) = p(\mathbf{A}\mathbf{e}_1) + q(\mathbf{A}\mathbf{e}_2)$ $-5q\mathbf{e}_2 \in V$ $+ \mathbf{k}) \times (\mathbf{i} - \mathbf{k}) = -3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k} \text{ (AEF)}$ $+ \mathbf{k}) = 11\mathbf{i} + 8\mathbf{j} - 15\mathbf{k} \text{ which is not a scaling of } \mathbf{i} - \mathbf{j} + \mathbf{k}$ $- \mathbf{j} + \mathbf{k} \text{ is not an eigenvector of } \mathbf{A} \text{ (CWO)}$	A1 M1A1A1 B1 M1A1 A1 M1A1 M1A1 M1