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1 Given that

y = x
2

sin x,

(i) show that the mean value of
dy

dx
with respect to x over the interval 0 ≤ x ≤ 1

2
π is 1

2
π, [2]

(ii) find the mean value of
d2y

dx2
with respect to x over the interval 0 ≤ x ≤ 1

2
π. [2]

2 Relative to an origin O, the points A, B, C have position vectors

i, j + k, i + j + θk,

respectively. The shortest distance between the lines AB and OC is
1√
2

. Find the value of θ. [6]

3 The curve C has equation

y = x2 − 5x + 4

x + 1
.

(i) Obtain the coordinates of the points of intersection of C with the axes. [2]

(ii) Obtain the equation of each of the asymptotes of C. [3]

(iii) Draw a sketch of C. [3]

4 It is given that

x = t + sin t, y = t
2 + 2 cos t,

where −π < t < π. Find
dy

dx
in terms of t. [2]

Show that

d2y

dx2
= 2t sin t(1 + cos t)3

. [4]

Show that
dy

dx
increases with x over the given interval of t. [2]

5 The equation

x
3 + 5x + 3 = 0

has roots α, β , γ . Use the substitution x = −3

y
to find a cubic equation in y and show that the roots of

this equation are βγ , γ α, αβ . [4]

Find the exact values of β2γ 2 + γ 2α2 + α2β2 and β3γ 3 + γ 3α3 + α3β3. [5]
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6 Show that

d

dx
[xn−1 √(4 − x

2)] = 4(n − 1)xn−2√(4 − x2) − nxn√(4 − x2) . [3]
Let

I
n
= ä 1

0

xn√(4 − x2) dx,

where n ≥ 0. Prove that

nI
n
= 4(n − 1)I

n−2
− √

3,

for n ≥ 2. [2]

Given that I
0
= 1

6
π, find I

4
, leaving your answer in an exact form. [4]

7 Use de Moivre’s theorem to express sin6 θ in the form

a + b cos 2θ + c cos 4θ + d cos 6θ ,

where a, b, c, d are constants to be found. [5]

Hence evaluate

ã 1

4
π

0

sin6 2x dx,

leaving your answer in terms of π. [4]

8 (a) The curve C
1

has equation y = − ln(cos x). Show that the length of the arc of C
1

from the point

where x = 0 to the point where x = 1

3
π is ln(2 + √

3). [5]

(b) The curve C
2

has equation y = 2
√(x + 3). The arc of C

2
joining the point where x = 0 to the

point where x = 1 is rotated through one complete revolution about the x-axis. Show that the area

of the surface generated is

8

3
π(5√

5 − 8). [5]
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9 Show that if y depends on x and x = eu then

x
2 d2y

dx2
= d2y

du2
− dy

du
. [4]

Given that y satisfies the differential equation

x
2 d2y

dx2
+ 5x

dy

dx
+ 3y = 30x

2
,

use the substitution x = eu to show that

d2y

du2
+ 4

dy

du
+ 3y = 30e

2u
. [2]

Hence find the general solution for y in terms of x. [5]

10 The curve C has polar equation

r = a sin 3θ ,

where 0 ≤ θ ≤ 1

3
π.

(i) Show that the area of the region enclosed by C is 1

12
πa2. [3]

(ii) Show that, at the point of C at maximum distance from the initial line,

tan 3θ + 3 tan θ = 0. [3]
(iii) Use the formula

tan 3θ = 3 tan θ − tan3 θ

1 − 3 tan2 θ

to find this maximum distance. [4]

(iv) Draw a sketch of C. [2]

© UCLES 2009 9231/01/O/N/09

http://www.studentbounty.com/
http://www.studentbounty.com


5

11 Answer only one of the following two alternatives.

EITHER

Prove by induction that

N

∑
n=1

n
3 = 1

4
N2(N + 1)2. [5]

Use this result, together with the formula for
N

∑
n=1

n2, to show that

N

∑
n=1

(20n
3 + 36n

2) = N(N + 1)(N + 3)(5N + 2). [3]

Let

S
N
= N

∑
n=1

(20n
3 + 36n

2 + µn).
Find the value of the constant µ such that S

N
is of the form N2(N + 1)(aN + b), where the constants

a and b are to be determined. [3]

Show that, for this value of µ ,

5 + 22

N
< N

−4
S

N
< 5 + 23

N
,

for all N ≥ 18. [3]

OR

One of the eigenvalues of the matrix

A = ( 1 −4 6

2 −4 2−3 4 a

)
is −2. Find the value of a. [3]

Another eigenvalue of A is −5. Find eigenvectors e
1

and e
2

corresponding to the eigenvalues −2 and−5 respectively. [3]

The linear space spanned by e
1

and e
2

is denoted by V .

(i) Prove that, for any vector x belonging to V , the vector Ax also belongs to V . [4]

(ii) Find a non-zero vector which is perpendicular to every vector in V , and determine whether it is

an eigenvector of A. [4]
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