UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Advanced Level**

www.papacambridge.com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/22

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		2.
Page 2	Mark Scheme: Teachers' version	Syllabus er
	GCE A LEVEL – May/June 2011	9231 23

Mark Scheme Notes

Marks are of the following three types:

- ambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are no lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2011	9231

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- www.papaCambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Mark Scheme: Teachers' version	Syllabus
GCE A LEVEL – May/June 2011	9231
-	

F	Page 4	Mark Scheme: Teachers'	version Syll	abus A	er	
		GCE A LEVEL – May/Ju	ne 2011 92	231 23	C	
Question Number	Mark Scho	eme Details		$\frac{4}{231}$ And $\frac{1}{2}$	Mai	
	Combine t	to find A and ω (in either order):	$16^{2} = \omega^{2}(A^{2} - 3^{2}), \ 12^{2} = \omega^{2}(A^{2} - 3^{2}), $	$(1^2 - 4^2)M1 A1$ B1 B1 B1 $\sqrt{10}$	5	[5]
2	Neglect x^2 Find eqn of	Hooke's Law for whole [or half] string: [M0 here for motion along string] of motion at general point: t to give SHM eqn for d^2x/dt^2 :	$T = \lambda \{2\sqrt{a^2 + x^2} - 2l\} / 2l$ = $(\lambda/l) (a - l)$ A.G. $md^2x/dt^2 = -2Tx/\sqrt{a^2 + x^2}$ - $(2T/ma) x \text{ or } - \{2\lambda (a - l)/a \}$	A1) M1	3	
	State perio M.R.	b) of motion using $2\pi/\omega$ (A.E.F.): Vertical motion loses one A/B mark Motion along string earns max 1 mark:	$2\pi \sqrt{\{alm/2\lambda (a-l)\}}$	(B1)	4	[7]
3 (i)	EITHER:	Resolve horizontally:	$F\cos\alpha = R\sin\alpha$	B2		
	OR:	Resolve along plane to find friction <i>F</i> : Resolve normal to plane for reaction <i>R</i>		(B1) (B1)		
	Use $F/R \leq$	1/2:	$\tan \alpha \leq \frac{1}{2}$ A.G.	M1 A1	4	
(ii)	EITHER:	Take moments about pt of contact:	$mg\left(a-a\sin\alpha\right)=Mga\sin\alpha$	α		
	OR:	Take moments about centre: Find inequality for sin α : Combine:	$mg = F = (M + m)g \sin \alpha$ $\sin \alpha \le 1/\sqrt{5}$ $m = M/(1/\sin \alpha - 1) \le M/(\sqrt{3})$	M1 A1 B1 /5 - 1)		
			$m \leq M/(1 + \sqrt{5}) / 4$ A.G.	M1 A1	5	[9]
l	Use Newt	rvation of momentum for 1 st collision: on's law of restitution (A1 if both correct	-	M1 M1 A1	E	
	Use conse	d u'_B of <i>B</i> after striking wall: rvation of momentum for 2 nd collision:		M1 A1 M1 B1	5	
	Use Newto Combine t	on's law of restitution: to find <i>e</i> :	$v_B = 0.6 (u_A + u'_B)$ $1.6e \times 1.2u = 2.4 \times 0.6u, e$	$B1 = \frac{3}{4} M1 A1$	5	[10]

Page 5	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2011	9231

	Page 5	Mark Scheme: Teachers'	version Syllabus	·	er	
		GCE A LEVEL – May/Jui	ne 2011 9231	20	2	
					any	
Question Number	Mark Sche	eme Details		M1 A1 M1	Mar	090
5	Equate rac Take $R = 0$	rvation of energy: lial forces [may imply $R = 0$]: 0 when contact lost: v^2 to find show cos $\theta = 3/5$ when $R = 0$:	$mv^{2}/a = mg \cos \theta$ 2 (cos \alpha - cos \theta) = cos \theta	M1 A1 M1 A1		
	Find <i>v</i> :	ow $R = 0$ when $\cos \theta = 3/5$] contal distance moved:	$\cos \theta = (2/3) \cos \alpha = 3/5$ A.G. $v = \sqrt{(3ag/5)} \text{ or } \sqrt{(6a)}$ x = 7a/5 - 4a/5 [= 3a/5]	B1 B1 B1	6	
		Find time of subsequent motion: Find distance <i>h</i> fallen in time <i>t</i> :	$t = x / v \cos \theta$ [= $a/v = \sqrt{(5a/3g)} = \sqrt{(a/6)}$] $h = (v \sin \theta) t + \frac{1}{2}gt^2$	M1 M1		
		Use trajectory eqn to find <i>h</i> :	$h = x \tan \theta + \frac{1}{2}g(x / v \cos \theta)^2$	(M2)		
		and simplify <i>h</i> : nce below horizontal through <i>O</i> :	h = 4a/5 + 5a/6 = 49a/30 h - 3a/5 = 31a/30 A.G.	M1 A1 B1	6	[12]
5	(lose A1 if State (at le Calculate Compare	cted values (to 1 dp): f rounded to integers) east) null hypothesis (A.E.F.): value of χ^2 : with consistent tabular value (to 2 dp): n consistent with values (A.E.F):	66.72 44.48 27.80 53.28 35.52 22.20 H ₀ : No association between then $\chi^2 = 5.36 \pm 0.03$ $\chi_{2, 0.95}^2 = 5.991$ No association	M1 A1 n B1 M1 A1 B1 A1 √	7	[7]
7	State both Calculate Estimate p (allow bia Calculate Compare	assumption (A.E.F.): hypotheses: sample mean: population variance: sed: $0.000929 \text{ or } 0.0305^2$) value of t (to 2 dp): with correct tabular t value: n consistent with values (A.E.F):	Popln. of masses has normal dist $H_0: \mu = 1.2, H_1: \mu > 1.2$ $\overline{x} = 12.11 / 10 [= 1.211]$ $s^2 = (14.6745 - 12.11^2/10) / 9$ $[= 0.00103 \text{ or } 0.0321^2]$ $t = (\overline{x} - 1.2) / (s/\sqrt{10}) = 1.08$ $t_{9, 0.90} = 1.38[3]$ Claim is not correct	m. B1 B1 B1 M1 M1 A1 B1 A1 √	8	[8]
3	Estimate p Find confi	sample mean: population variance (allow biased): dence interval (allow <i>z</i> in place of <i>t</i>) e.g ent use of 5 or 6 loses M1)	$\overline{d} = 35.15$ $s^2 = 30.24 [5.5^2] \text{ (or } 25.2 [5.02^2]$ $\therefore 35.15 \pm t \sqrt{(30.24/6)}$	B1) B1 M1		
	Use of cor Evaluate (State inequ	rect tabular value: C.I. correct to 3 s.f. (needs correct s , t): uality involving sample size n : or wrong critical value loses A1)	$t_{5, 0.975} = 2.571 \ (2 \text{ d.p.})$ $35.15 \pm 5.77 \ or \ [29.4, 40.9]$ $1.96 \times 5.6 \ /\sqrt{n} \le (or <) \ 2.5$	A1 A1 M1 A1	5	
	Solve for	limiting value of <i>n</i> : lest sample size:	$4.39^2 = 19.3$ $n_{\min} = 20$	A1 A1	4	[9

Page 6Mark Scheme: Teachers GCE A LEVEL – May/JuQuestion NumberMark Scheme Details9State hypotheses: Estimate population variance using boys' sample (allow use of biased: $\sigma_{b,40}^2 = 0.1225 \text{ or } 0.35^2$) Estimate population variance using girls' sample (allow use of biased: $\sigma_{g,60}^2 = 0.133 \text{ or } 0.365^2$) Estimate population variance for combined samp (allow use of $\sigma_{b,40}^2$, $\sigma_{g,60}^2$) Calculate value of z (to 2 dp):S.R. Allow (implicit) assumption of equal varian Find pooled estimate of common variance s^2 Calculate value of z (to 2 dp):Compare with correct tabular t value: Conclusion consistent with values (A.E.F):10(i)Find correlation coefficient r : $r = (92.01 - 18.7 \times 34.7/12) / \sqrt{(106.43 - 18.7^2/20.1 - 18.7 \times 34.7/12)}(ii)State both hypotheses:Use correct tabular 2-tail r value:Valid method for reaching conclusion:Correct conclusion (AEF, dep *A1, *B1):(iii)ElTUEP: Columbra canding this u_1 = u_2 = h(u_1 = u_2)$	ne 2011 H ₀ : $\mu_b = \mu_g$, H ₁ : $\mu_b > \mu_g$: $s_b^2 = (216 \cdot 5 - 92 \cdot 0^2/40) / 3$ [= 0.126 or 0.354 ²] $s_g^2 = (288 \cdot 8 - 129 \cdot 8^2/60) /$ [= 0.136 or 0.368 ²] le: $s^2 = s_b^2/40 + s_g^2/60$ = 0.00541 or 0.0736 ² (or 0.00528 or 0.0727 ²) $z = (2 \cdot 3 - 2 \cdot 163) / s$ = 0.1367/0.0736 = 1.86 (or ces: : $(40\sigma_{b,40}^2 + 60\sigma_{g,60}^2)/98 =$ $z = (2 \cdot 3 - 2 \cdot 163) / s \sqrt{(1/40 + 100)} =$ $z = (2 \cdot 3 - 2 \cdot 163) / s \sqrt{(1/40 + 100)} =$ z = 1.96 Claim is not correct	M1 59 M1 M1 A1 M1 A1 0·132 (M1A1) 0·132 (M1A1) B1 A1 √ M1	Mat 9	[9]		
Number 9 State hypotheses: Estimate population variance using boys' sample (allow use of biased: $\sigma_{b,40}^2 = 0.1225 \text{ or } 0.35^2$) Estimate population variance using girls' sample (allow use of biased: $\sigma_{g,60}^2 = 0.133 \text{ or } 0.365^2$) Estimate population variance for combined samp (allow use of $\sigma_{b,40}^2$, $\sigma_{g,60}^2$) Calculate value of z (to 2 dp): S.R. Allow (implicit) assumption of equal varian Find pooled estimate of common variance s^2 Calculate value of z (to 2 dp):Compare with correct tabular t value: Conclusion consistent with values (A.E.F): 10 (i)Find correlation coefficient r : $r = (92.01 - 18.7 \times 34.7/12) / \{(106.43 - 18.7^2/(ii)State both hypotheses:Use correct tabular 2-tail r value:Valid method for reaching conclusion:Correct conclusion (AEF, dep *A1, *B1):$	$s_{b}^{2} = (216 \cdot 5 - 92 \cdot 0^{2}/40) / 3$ $[= 0 \cdot 126 \text{ or } 0 \cdot 354^{2}]$ $s_{g}^{2} = (288 \cdot 8 - 129 \cdot 8^{2}/60) / [= 0 \cdot 136 \text{ or } 0 \cdot 368^{2}]$ $[= s^{2} = s_{b}^{2}/40 + s_{g}^{2}/60$ $= 0 \cdot 00541 \text{ or } 0 \cdot 0736^{2}$ $(\text{or } 0 \cdot 00528 \text{ or } 0 \cdot 0727^{2})$ $z = (2 \cdot 3 - 2 \cdot 163) / s$ $= 0 \cdot 1367 / 0 \cdot 0736 = 1 \cdot 86 \text{ (or } 0 \cdot 0736^{2} + 60\sigma_{g,60}^{2}) / 98 = z$ $z = (2 \cdot 3 - 2 \cdot 163) / s \sqrt{(1/40 + 100)} + 1000 \text{ s}^{2} + 10000 \text{ s}^{2} + 100$	M1 59 M1 M1 A1 M1 A1 0·132 (M1A1) 0·132 (M1A1) B1 A1 √ M1				
Number 9 State hypotheses: Estimate population variance using boys' sample (allow use of biased: $\sigma_{b,40}^2 = 0.1225 \text{ or } 0.35^2$) Estimate population variance using girls' sample (allow use of biased: $\sigma_{g,60}^2 = 0.133 \text{ or } 0.365^2$) Estimate population variance for combined samp (allow use of $\sigma_{b,40}^2$, $\sigma_{g,60}^2$) Calculate value of z (to 2 dp): S.R. Allow (implicit) assumption of equal varian Find pooled estimate of common variance s^2 Calculate value of z (to 2 dp):Compare with correct tabular t value: Conclusion consistent with values (A.E.F): 10 (i)Find correlation coefficient r : $r = (92.01 - 18.7 \times 34.7/12) / \{(106.43 - 18.7^2/(ii)State both hypotheses:Use correct tabular 2-tail r value:Valid method for reaching conclusion:Correct conclusion (AEF, dep *A1, *B1):$	$s_{b}^{2} = (216 \cdot 5 - 92 \cdot 0^{2}/40) / 3$ $[= 0 \cdot 126 \text{ or } 0 \cdot 354^{2}]$ $s_{g}^{2} = (288 \cdot 8 - 129 \cdot 8^{2}/60) / [= 0 \cdot 136 \text{ or } 0 \cdot 368^{2}]$ $[= s^{2} = s_{b}^{2}/40 + s_{g}^{2}/60$ $= 0 \cdot 00541 \text{ or } 0 \cdot 0736^{2}$ $(\text{or } 0 \cdot 00528 \text{ or } 0 \cdot 0727^{2})$ $z = (2 \cdot 3 - 2 \cdot 163) / s$ $= 0 \cdot 1367 / 0 \cdot 0736 = 1 \cdot 86 \text{ (or } 0 \cdot 0736^{2} + 60\sigma_{g,60}^{2}) / 98 = z$ $z = (2 \cdot 3 - 2 \cdot 163) / s \sqrt{(1/40 + 100)} + 1000 \text{ s}^{2} + 10000 \text{ s}^{2} + 100$	M1 59 M1 M1 A1 M1 A1 0·132 (M1A1) 0·132 (M1A1) B1 A1 √ M1				
(ii) State both hypotheses: Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion (AEF, dep *A1, *B1):	$s_{b}^{2} = (216 \cdot 5 - 92 \cdot 0^{2}/40) / 3$ $[= 0 \cdot 126 \text{ or } 0 \cdot 354^{2}]$ $s_{g}^{2} = (288 \cdot 8 - 129 \cdot 8^{2}/60) / [= 0 \cdot 136 \text{ or } 0 \cdot 368^{2}]$ $[= s^{2} = s_{b}^{2}/40 + s_{g}^{2}/60$ $= 0 \cdot 00541 \text{ or } 0 \cdot 0736^{2}$ $(\text{or } 0 \cdot 00528 \text{ or } 0 \cdot 0727^{2})$ $z = (2 \cdot 3 - 2 \cdot 163) / s$ $= 0 \cdot 1367 / 0 \cdot 0736 = 1 \cdot 86 \text{ (or } 0 \cdot 0736^{2} + 60\sigma_{g,60}^{2}) / 98 = z$ $z = (2 \cdot 3 - 2 \cdot 163) / s \sqrt{(1/40 + 100)} + 1000 \text{ s}^{2} + 10000 \text{ s}^{2} + 100$	M1 59 M1 M1 A1 M1 A1 0·132 (M1A1) 0·132 (M1A1) B1 A1 √ M1				
(allow use of biased: $\sigma_{b,40}^2 = 0.1225 \text{ or } 0.35^2$) Estimate population variance using girls' sample (allow use of biased: $\sigma_{g,60}^2 = 0.133 \text{ or } 0.365^2$) Estimate population variance for combined samp (allow use of $\sigma_{b,40}^2$, $\sigma_{g,60}^2$) Calculate value of z (to 2 dp): S.R. Allow (implicit) assumption of equal varian Find pooled estimate of common variance s' Calculate value of z (to 2 dp): Compare with correct tabular t value: Conclusion consistent with values (A.E.F): 10 (i) Find correlation coefficient r : $r = (92.01 - 18.7 \times 34.7/12) / \sqrt{(106.43 - 18.7^2/12)} / \sqrt{(106.43 - 18.7^2)} / \sqrt{(106.43 - 18.7^2)} / \sqrt{(106.43 - 18.7^2)} / (106$	$[= 0.126 \text{ or } 0.354^{2}]$ $s_{g}^{2} = (288 \cdot 8 - 129 \cdot 8^{2}/60) / [= 0.136 \text{ or } 0.368^{2}]$ le: $s^{2} = s_{b}^{2}/40 + s_{g}^{2}/60$ $= 0.00541 \text{ or } 0.0736^{2}$ (or $0.00528 \text{ or } 0.0727^{2}$) $z = (2 \cdot 3 - 2.163) / s$ = 0.1367/0.0736 = 1.86 (or ces: $: (40\sigma_{b,40}^{2} + 60\sigma_{g,60}^{2})/98 =$ $z = (2 \cdot 3 - 2.163) / s \sqrt{(1/40+100)} =$ $z = (2 \cdot 3 - 2.163) / s \sqrt{(1/40+100)} =$ z = 1.85 $z_{0.975} = 1.96$ Claim is not correct $(2) (133 \cdot 43 - 34 \cdot 7^{2}/12) =$ $= 37.94 / \sqrt{(77.29 \times 33.09)}$	M1 59 M1 M1 A1 M1 A1 0·132 (M1A1) 0·132 (M1A1) B1 A1 √ M1				
(ii) Estimate population variance using girls' sample (allow use of biased: $\sigma_{g,60}^2 = 0.133 \text{ or } 0.365^2$) Estimate population variance for combined samp (allow use of $\sigma_{b,40}^2$, $\sigma_{g,60}^2$) Calculate value of z (to 2 dp): S.R. Allow (implicit) assumption of equal varian Find pooled estimate of common variance s^2 Calculate value of z (to 2 dp): Compare with correct tabular t value: Conclusion consistent with values (A.E.F): IO (i) Find correlation coefficient r : $r = (92.01 - 18.7 \times 34.7/12) / \sqrt{(106.43 - 18.7^2/100.43)}$ (ii) State both hypotheses: Use correct tabular 2-tail r value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):	$s_{g}^{2} = (288 \cdot 8 - 129 \cdot 8^{2}/60) / [= 0.136 \text{ or } 0.368^{2}]$ le: $s^{2} = s_{b}^{2}/40 + s_{g}^{2}/60$ $= 0.00541 \text{ or } 0.0736^{2}$ (or $0.00528 \text{ or } 0.0727^{2}$) z = (2.3 - 2.163)/s = 0.1367/0.0736 = 1.86 (or ces: : $(40\sigma_{b,40}^{2} + 60\sigma_{g,60}^{2})/98 =$ $z = (2.3 - 2.163)/s\sqrt{(1/40+100)} =$ $z = (2.3 - 2.163)/s\sqrt{(1/40+10)} =$ z = 1.85 $z_{0.975} = 1.96$ Claim is not correct .2) $(133.43 - 34.7^{2}/12)$ $= 37.94 / \sqrt{(77.29 \times 33.09)}$	M1 M1 A1 m A1 m 1.88) M1 A1 0.132 (M1A1) 0.132 (M1A1) B1 A1 √ M1	9	[9]		
 Estimate population variance for combined samp (allow use of σ_{b,40}², σ_{g,60}²) Calculate value of <i>z</i> (to 2 dp): S.R. Allow (implicit) assumption of equal varian Find pooled estimate of common variance <i>s</i>² Calculate value of <i>z</i> (to 2 dp): Compare with correct tabular <i>t</i> value: Conclusion consistent with values (A.E.F): I0 (i) Find correlation coefficient <i>r</i>: <i>r</i> = (92.01 − 18.7 × 34.7/12) / √{(106.43 − 18.7²/ Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1): 	le: $s^2 = s_b^2/40 + s_g^2/60$ = 0.00541 or 0.0736 ² (or 0.00528 or 0.0727 ²) z = (2.3 - 2.163)/s = 0.1367/0.0736 = 1.86 (or ces: : $(40\sigma_{b,40}^2 + 60\sigma_{g,60}^2)/98 =$ $z = (2.3 - 2.163)/s\sqrt{(1/40+100)}$ = 1.85 $z_{0.975} = 1.96$ Claim is not correct .2) $(133.43 - 34.7^2/12)$ = $37.94 / \sqrt{(77.29 \times 33.09)}$	M1 A1 or 1.88) M1 A1 0.132 (M1A1) -1/60) (M1 A1) B1 A1 √ M1	9	[9]		
 Calculate value of z (to 2 dp): S.R. Allow (implicit) assumption of equal varian Find pooled estimate of common variance sⁱ Calculate value of z (to 2 dp): Compare with correct tabular t value: Conclusion consistent with values (A.E.F): 10 (i) Find correlation coefficient r: r = (92.01 - 18.7 × 34.7/12) / √{(106.43 - 18.7²/ 18.7	$(or \ 0.00528 \text{ or } 0.0727^2)$ $z = (2 \cdot 3 - 2 \cdot 163)/s$ $= 0.1367/0.0736 = 1.86 (or constraints)$ $: (40 \sigma_{b,40}^2 + 60 \sigma_{g,60}^2)/98 =$ $z = (2 \cdot 3 - 2 \cdot 163)/s \sqrt{(1/40+1)}$ $= 1.85$ $z_{0.975} = 1.96$ Claim is not correct $(2) (133 \cdot 43 - 34 \cdot 7^2/12) =$ $= 37.94 / \sqrt{(77.29 \times 33.09)}$	or 1.88) M1 A1 0.132 (M1A1) -1/60) (M1 A1) B1 A1 √ M1	9	[9]		
 Calculate value of z (to 2 dp): S.R. Allow (implicit) assumption of equal varian Find pooled estimate of common variance sⁱ Calculate value of z (to 2 dp): Compare with correct tabular t value: Conclusion consistent with values (A.E.F): 10 (i) Find correlation coefficient r: r = (92.01 - 18.7 × 34.7/12) / √{(106.43 - 18.7²/ 18.7	$z = (2 \cdot 3 - 2 \cdot 163) / s$ = 0 \cdot 1367 / 0 \cdot 0736 = 1 \cdot 86 (o) ces: : (40 \sigma_{b,40}^2 + 60 \sigma_{g,60}^2) / 98 = z = (2 \cdot 3 - 2 \cdot 163) / s \sigma(1/40 + = 1 \cdot 85 z \text{ 0.975} = 1 \cdot 96 Claim is not correct 2) (133 \cdot 43 - 34 \cdot 7^2 / 12) } = 37 \cdot 94 / \sigma(77 \cdot 29 \text{ x3.09})	0·132 (M1A1) ·1/60) (M1 A1) B1 A1 √ M1	9	[9]		
Find pooled estimate of common variance s Calculate value of z (to 2 dp):Compare with correct tabular t value: Conclusion consistent with values (A.E.F):10 (i)Find correlation coefficient r: $r = (92.01 - 18.7 \times 34.7/12) / (106.43 - 18.7^2/1$	ces: : $(40\sigma_{b,40}^2 + 60\sigma_{g,60}^2)/98 =$ $z = (2 \cdot 3 - 2 \cdot 163)/s\sqrt{(1/40+2)}$ = 1.85 $z_{0.975} = 1.96$ Claim is not correct 2) $(133 \cdot 43 - 34 \cdot 7^2/12)$ $= 37.94 / \sqrt{(77 \cdot 29 \times 33 \cdot 09)}$	0·132 (M1A1) ·1/60) (M1 A1) B1 A1 √ M1	9	[9]		
Find pooled estimate of common variance s Calculate value of z (to 2 dp):Compare with correct tabular t value: Conclusion consistent with values (A.E.F):10 (i)Find correlation coefficient r: $r = (92.01 - 18.7 \times 34.7/12) / (106.43 - 18.7^2/1$	$: (40\sigma_{b,40}^{2} + 60\sigma_{g,60}^{2})/98 =$ $z = (2 \cdot 3 - 2 \cdot 163)/s \sqrt{(1/40+1)}$ $= 1 \cdot 85$ $z_{0.975} = 1 \cdot 96$ Claim is not correct $(2) (133 \cdot 43 - 34 \cdot 7^{2}/12) =$ $= 37 \cdot 94 / \sqrt{(77 \cdot 29 \times 33 \cdot 09)}$	-1/60) (M1 A1) B1 A1 √ M1	9	[9]		
Find pooled estimate of common variance s Calculate value of z (to 2 dp):Compare with correct tabular t value: Conclusion consistent with values (A.E.F):10 (i)Find correlation coefficient r: $r = (92.01 - 18.7 \times 34.7/12) / (106.43 - 18.7^2/1$	$: (40\sigma_{b,40}^{2} + 60\sigma_{g,60}^{2})/98 =$ $z = (2 \cdot 3 - 2 \cdot 163)/s \sqrt{(1/40+1)}$ $= 1 \cdot 85$ $z_{0.975} = 1 \cdot 96$ Claim is not correct $(2) (133 \cdot 43 - 34 \cdot 7^{2}/12) =$ $= 37 \cdot 94 / \sqrt{(77 \cdot 29 \times 33 \cdot 09)}$	-1/60) (M1 A1) B1 A1 √ M1	9	[9]		
Compare with correct tabular t value: Conclusion consistent with values (A.E.F):10 (i)Find correlation coefficient r: $r = (92.01 - 18.7 \times 34.7/12) / (106.43 - 18.7^2/18.7^$	= 1.85 $z_{0.975} = 1.96$ Claim is not correct (1) (133.43 - $34.7^2/12$) = $37.94 / \sqrt{(77.29 \times 33.09)}$	(M1 A1) B1 A1 √ M1	9	[9]		
Conclusion consistent with values (A.E.F):10 (i)Find correlation coefficient r : $r = (92.01 - 18.7 \times 34.7/12) / (106.43 - 18.7^2/(ii)State both hypotheses:Use correct tabular 2-tail r value:Valid method for reaching conclusion:Correct conclusion (AEF, dep *A1, *B1):$	$z_{0.975} = 1.96$ Claim is not correct (2) (133.43 - 34.7 ² /12)} = 37.94 / $\sqrt{(77.29 \times 33.09)}$	B1 A1 √ M1	9	[9]		
Conclusion consistent with values (A.E.F):10 (i)Find correlation coefficient r : $r = (92.01 - 18.7 \times 34.7/12) / (106.43 - 18.7^2/(ii)State both hypotheses:Use correct tabular 2-tail r value:Valid method for reaching conclusion:Correct conclusion (AEF, dep *A1, *B1):$	Claim is not correct 2) $(133.43 - 34.7^2/12)$ = $37.94 / \sqrt{(77.29 \times 33.09)}$	A1 √ M1	9	[9]		
(ii) State both hypotheses: Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):	$= 37.94 / \sqrt{(77.29 \times 33.09)}$					
(ii) State both hypotheses: Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):	$= 37.94 / \sqrt{(77.29 \times 33.09)}$					
 (ii) State both hypotheses: Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1): 	$= 37.94 / \sqrt{(77.29 \times 33.09)}$)				
Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):	$= 37.94 / (8.791 \times 5.752)$					
Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):	0 1 C1 / / C 111 0 755	-				
Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):	$or 3.161 / \sqrt{(6.441 \times 2.757)}$ = 3.161 / (2.538 × 1.661)	·				
Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):	$= 3.1017 (2.338 \times 1.001)$ = 0.750 [allow 0.75]	A1 *A1	3			
Use correct tabular 2-tail <i>r</i> value: Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):			5			
Valid method for reaching conclusion: Correct conclusion (AEF, dep *A1, *B1):	$H_0: \rho = 0, H_1: \rho \neq 0$	B1				
Correct conclusion (AEF, dep *A1, *B1):	$r_{12, 1\%} = 0.708$ (to 2 dp) Reject H ₀ if $ r >$ tabular va	*B1 alue M1				
(:::) $EITUEP$. Coloulate anodiant h in $a_1 = h(a_1 = a_2)$	There is non-zero correlat:		4			
	<i>EITHER</i> : Calculate gradient b in $y - \overline{y} = b(x - \overline{x})$: $b = (92.01 - 18.7 \times 34.7/12) / (106.43 - 18.7^2/12)$					
$b = (92.01 - 18.7 \times 34.7/12) / (106.43 - 37.94 / 77.29 = 0.491)$	10.1/12)	B1				
Use regression line for y at $x = 2$:	$y = 34 \cdot 7/12 + 0 \cdot 491(x - 18)$					
[y = 0.491x + 2.13]	$= 2.13 + 0.491x = 3.11 \pm$,				
<i>OR</i> : Calculate gradient b' in $x - \overline{x} = b'$ ($y - b'$)	<i>OR</i> : Calculate gradient b' in $x - \overline{x} = b' (v - \overline{v})$:					
$b' = (92.01 - 18.7 \times 34.7/12) / (133.43)$						
= 37.94 / 33.09 = 1.15		(B1)				
Use regression line for y at $x = 2$: [$x = 1.15y - 1.76$]	$y = 34 \cdot 7/12 + (x - 18 \cdot 7/12)$)/1·15 (M1)		[10]		

		2.
Page 7	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2011	9231
· · · · ·		

	Page 7	Mark Scheme: Teachers GCE A LEVEL – May/Ju	' version ne 2011	Syllabus 9231	er er	
					Can	
Question Number	Mark Sc	heme Details		Syllabus 9231 923 9231 923 923 923 923 923	Mai	idge.
11 (a)	Find MI Find MI	of one side of square about midpoint: of side of square (or of square) about <i>O</i> : of ring about <i>O</i> : ind MI of system about <i>O</i> : A.G.	$2Ma^2$	B1		2
	Find MI State or Use ener	of system about axis through A : imply that speed is max when AC vertica gy when AC vertical (or at general point)	$I_{A} = \frac{1}{2} I_{O} + 3Ma^{2}$ $I_{O} = \frac{1}{2} I_{O} + 3Ma^{2} \omega^{2}$ $I_{A} = \frac{1}{2} I_{A} + \frac{1}{2} Ma^{2} \omega^{2}$ $I_{A} = \frac{1}{2} I_{A} + \frac{1}{2} Ma^{2} \omega^{2}$	$= 13 Ma^{2}/3 M1 A1 M1 $ $[=25 Ma^{2}/3]$	2	
		for each side of eqn, A.E.F.) te for I_A and find max speed $v = 2a\omega$:	$= 5Mga (1 + \cos \theta)$ $\omega^2 = (15Mga/2) / (15M$	60°) or $15Mga/2$ M1 A1 A1 $(25Ma^2/6) = 9g/5a$		
				$\sqrt{(2a)} \text{ or } 8.49\sqrt{a} \text{ M1 A1}$	6	[14]
(b)	Find f(x)	y equating area under graph to 1:) for $0 < x \le 1$ and $1 < x \le 3$: to find $F(x)$ for $0 < x \le 1$ and $1 < x \le 3$:	$\frac{1}{2}k + k = 1, \ k = \frac{2}{3}k$ $kx [= \frac{2}{3}x], \frac{1}{2}k(3 - \frac{1}{3}x^2), \ x - \frac{1}{2} - \frac{x^2}{6}k$	$-x$) [= 1 - $\frac{1}{3}x$] M1 A1		
	(i)	Relate dist. fn. G(y) of Y to X: (working may be omitted)	G(y) = P(Y < y) = = P(X < y ^{1/2}) = F(= 1/3y, y ^{1/2} - 1/2 - y	y ^{1/2}) /6 M1 A1		
		Differentiate to find g(<i>y</i>):	$g(y) = \frac{1}{3}$ (0 < $\frac{1}{2}y^{-1/2} - \frac{1}{6}$ (1 < [0 otherwise]	$(y \le 1),$	4	
	(ii)	Use $G(m) = \frac{1}{2}$ to find eqn for median <i>m</i> Solve quadratic for \sqrt{m} :	$(\sqrt{m})^2 - 6\sqrt{m} + 6 =$	$= 0, \sqrt{m} = 3 \pm \sqrt{3} \text{ M1 A1}$		
		Select value of <i>m</i> in interval:	$m = (3 - \sqrt{3})^2 = 1$	$2 - 6\sqrt{3} \text{ or } 1.61$ B1	4	[14