www.papaCambridge.com MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/11

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

GCE A LEVEL – October/November 2011 9231	Page 2	Mark Scheme: Teachers' version	Syllabus 2
		GCE A LEVEL – October/November 2011	9231

Mark Scheme Notes

Marks are of the following three types:

- ambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – October/November 2011	9231

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- www.papaCambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – October/November 2011	9231

	Page 4		k Scheme: Teachers' version Syllab LEVEL – October/November 2011 9231		apacat	
Qu No	Comm	ientary	Solution	Marks	Par Mark	bridge
	(N.B. Not α , β	', γ)	Let roots be α , α , and β .			
	Writes down s	um of roots,	(1) $2\alpha + \beta = 0$	M1		
	sum of produc	ts in pairs	(2) $2\alpha\beta + \alpha^2 = p$	A1		
	and product of	f roots.	$(3) \alpha^2 \beta = -q$	A1		
			From (1) $\beta = -2\alpha$			
	Eliminates β (or α).	(2) $\Rightarrow -4\alpha^2 + \alpha^2 = p \Rightarrow p = -3\alpha^2$			
			$(3) \Rightarrow -2\alpha^3 = -q \Rightarrow q = 2\alpha^3$	M1		
	Equates power	r of α (or β)	$\alpha^{6} = \left(-\frac{p}{3}\right)^{3} = \left(\frac{q}{2}\right)^{2} \Longrightarrow 4p^{3} + 27q^{2} = 0 $ (AG)	A1	5	[5]
2	Finds $\mathbf{a} \times \mathbf{b}$		$\begin{vmatrix} i & j & k \\ 3 & 2 & -1 \\ 4 & -3 & 2 \end{vmatrix} = \mathbf{i} - 10\mathbf{j} - 17\mathbf{k}$	M1 A1		
	Finds area of b	base.	$\frac{1}{2}\sqrt{1^2 + (-10)^2 + (-17)^2} = \frac{1}{2}\sqrt{390} \qquad (=9.87)$	A1	3	
	Attempts to fin	nd height	Height = $\frac{(3i - j - k).(i - 10j - 17k)}{\sqrt{1^2 + (-10)^2 + (-17)^2}} = \frac{30}{\sqrt{390}}$ (= 1.519)	M1		
	Finds volume		$\frac{1}{3} \times \frac{1}{2} \sqrt{390} \times \frac{30}{\sqrt{390}} = 5$	A1	2	[5]

>

				yllabus 9231	apac	
Qu No	Comm	ientary	Solution	Marks	r Mar	hbrid
3	Proves base ca	ise.	$H_n: \frac{d^n}{dx^n}(e^x \sin x) = 2^{\frac{n}{2}}e^x \sin\left(x + \frac{n\pi}{4}\right)$		PapaCal, Mat	30
			$\frac{d}{dx}(e^x \sin x) = \sin x e^x + e^x \cos x$	M1		
			$=\sqrt{2}e^{x}\left(\frac{\sin x}{\sqrt{2}}+\frac{\cos x}{\sqrt{2}}\right)=2^{\frac{1}{2}}e^{x}\sin\left(x+\frac{\pi}{4}\right)$			
			\Rightarrow H ₁ is true.	A1		
	States inductiv	ve hypothesis.	Assume H_k is true :	B1		
	Proves inducti	ve step.	$\frac{d^{k+1}}{dx^{k+1}}(e^x \sin x) = 2^{\frac{k}{2}} \left\{ e^x \sin\left(x + \frac{k\pi}{4}\right) + e^x \cos\left(x + \frac{k\pi}{4}\right) \right\}$	$\left(\frac{\pi}{4}\right)$ M1		
			$=2^{\frac{k+1}{2}}e^{x}\left\{\frac{1}{\sqrt{2}}\sin\left(x+\frac{k\pi}{4}\right)+\frac{1}{\sqrt{2}}\cos\left(x+\frac{k\pi}{4}\right)\right\}$	A1		
			$=2^{\frac{k+1}{2}}e^{x}\left\{\sin\left(x+\frac{k\pi}{4}+\frac{\pi}{4}\right)\right\}$			
			$=2^{\frac{k+1}{2}}e^x\sin\left(x+\frac{(k+1)\pi}{4}\right)$	A1		
	States conclus	ion.	$\therefore H_k \Rightarrow H_{k+1}$ Hence true for all positive integers by PMI	A1	7	[7]

		7
Page 6	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – October/November 2011	9231
	GCE A LEVEL – October/November 2011	9231

	Page 6		k Scheme: Teachers' version Sylla LEVEL – October/November 2011 923	bus 31	abac
Qu No	Comm	nentary	Solution	Marks	Nan Mar
4 (i)	Reduces matri form.	ix to echelon	$ \begin{pmatrix} 3 & 4 & 2 & 5 \\ 6 & 7 & 5 & 8 \\ 9 & 9 & 9 & 9 \\ 15 & 16 & 14 & 17 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & 2 & 5 \\ 0 & -1 & 1 & -2 \\ 0 & -3 & 3 & -6 \\ 0 & -4 & 4 & -8 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & 2 & 5 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	M1A1	apacampridge
l	States rank,		\Rightarrow R(M) = 2.	A1	
			Basis for range space is:		
	and basis for r	range space.	$ \left\{ \begin{pmatrix} 3\\6\\9\\15 \end{pmatrix}, \begin{pmatrix} 4\\7\\9\\16 \end{pmatrix} \right\} (OE) $	A1	4
			Alternatively:		
			$\mathbf{c}_{1} = \begin{pmatrix} 3 \\ 6 \\ 9 \\ 15 \end{pmatrix} \mathbf{c}_{2} = \begin{pmatrix} 4 \\ 7 \\ 9 \\ 16 \end{pmatrix} \mathbf{c}_{3} = \begin{pmatrix} 2 \\ 5 \\ 9 \\ 14 \end{pmatrix} \mathbf{c}_{4} = \begin{pmatrix} 5 \\ 8 \\ 9 \\ 17 \end{pmatrix}$		
	Shows linear of Finds a lin. ind States rank and basis for r	idep. set.	$2\mathbf{c}_1 = \mathbf{c}_2 + \mathbf{c}_3$ and $\mathbf{c}_4 = \mathbf{c}_1 + \mathbf{c}_2 - \mathbf{c}_3 \Rightarrow$ lin. dep. but any two e.g. \mathbf{c}_1 , and \mathbf{c}_2 are lin. indep. Hence $R(\mathbf{M}) = 2$ Basis of range space is $\{\mathbf{c}_1, \mathbf{c}_2\}$	M1 A1 A1 A1	
(ii)	Forms equatio	ons.	3x + 4y + 2z + 5t = 0-y + z - 2t = 0	M1	
	(Gives two par solution.)	rameter	$(t = \lambda , z = \mu , y = \mu - 2\lambda , x = \lambda - 2\mu)$		
	States basis of	f null space.	Basis of null space is $ \begin{cases} 1\\-2\\0\\1 \end{cases}, \begin{pmatrix}-2\\1\\1\\0 \end{cases} \end{cases} \text{ or } \begin{cases} -3\\0\\2\\1 \end{pmatrix}, \begin{pmatrix}0\\-3\\1\\2 \\1 \end{cases} \end{cases} $	A1A1	3
	(Or by reducir echelon form, other valid me	• •	or any two of the above four vectors.		[7]

	Page 7		Scheme: Teachers' versionSyllatEVEL – October/November 2011923	Dus 1	apac	
Qu No	Comn	nentary	Solution	Marks	r Mar	bride
5 (i)	One mark for	each side.	$3x^2 - 6y^2y' = 3y + 3xy'$	B1B1		30
	Substitutes (2,	,1)	$12 - 6y' = 3 + 6y' \Longrightarrow y' = \frac{3}{4}$	B1√	3	
(ii)	One mark for both 1 st and 3 ^r mark for each terms.	differentiating ^d terms. One of 2 nd and 4 th	$6x - \left\{ 6y^2y'' + 12y(y')^2 \right\} = 3y' + 3y' + 3xy''$	B1B1 B1		
	Substitute (2,1) $y'(2) = \frac{3}{4}$.	l) and	$12 - (6y'' + \frac{27}{4}) = \frac{9}{4} + \frac{9}{4} + 6y'' \Longrightarrow 12y'' = \frac{3}{4} \Longrightarrow y'' = \frac{1}{16}$	B1	4	[7]
6	T		$I_n = \int_0^1 x^n (1-x)^{\frac{1}{2}} dx$			[/]
	Integrates by j	parts.	$= \left[-\frac{2}{3}x^{n}(1-x)^{\frac{3}{2}} \right]_{0}^{1} + \frac{2}{3}\int_{0}^{1}nx^{n-1}(1-x)(1-x)^{\frac{1}{2}}dx$	M1A1		
	Rearranges.		$=0+\frac{2n}{3}\int_0^1 x^{n-1}(1-x)^{\frac{1}{2}}dx-\frac{2n}{3}\int_0^1 x^n(1-x)^{\frac{1}{2}}dx$	M1A1		
			$=\frac{2n}{3}I_{n-1}-\frac{2n}{3}I_{n}$			
	Obtains printe	ed result.	$\Rightarrow (2n+3)I_n = 2nI_{n-1} \tag{AG}$	A1	5	
	Evaluates I_0 .		$I_0 = \int_0^1 (1-x)^{\frac{1}{2}} dx = \left[-\frac{2}{3} (1-x)^{\frac{3}{2}} \right]_0^1 = \frac{2}{3}$	B1		
	Uses reduction	n formula.	$I_3 = \frac{6}{9} \times \frac{4}{7} \times \frac{2}{5} \times \frac{2}{3} = \frac{32}{315}$	M1A1	3	[8]

	Page 8		k Scheme: Teachers' version LEVEL – October/November 2011	Syllabus 9231	apac	
Qu No	Comm	ientary	Solution	Syllabus 9231 Marks B1 M1	l Mar	Ibrid
7	Vertical asymp	ptote.	<i>x</i> = 2	B1	3	Se.
	Divides by $(x \cdot$	- 2)	$y = x + p + 2 + \frac{2p + 5}{x - 2}$	M1		
	Oblique asymptote.		y = x + p + 2	A1	3	
	Differentiates.		$\frac{dy}{dx} = \frac{x^2 - 4x + 4 - 2p - 5}{(x - 2)^2}$	M1A1		
			$y' = 0 \Longrightarrow x^2 - 4x - (2p+1) = 0$	M1		
			$B^2 - 4AC > 0 \Longrightarrow 16 + 4(2p+1) > 0$	M1		
			$\Rightarrow p > -\frac{5}{2}$	A1	5	
	Sketches graph Working to sh $x^2 - x + 1 = 0$ h roots, or maxim	ow either as no real	Axes and (0,-0.5) marked Upper Branch with minimum. Lower with maximum below <i>x</i> -axis. (Deduct at most 1 for poor forms at infinity.)	B1 B1 B1	3	[11]

	Page 9		Scheme: Teachers' version EVEL – October/November 2011	Syllabus 9231	abac
Qu No	Comm	nentary	Solution	Marks	er Man 2
8	Shows require $Ae = \lambda e$.	d result, using	$\mathbf{ABe} = \mathbf{A}\mu\mathbf{e} = \mu\mathbf{Ae} = \mu\lambda\mathbf{e} = \lambda\mu\mathbf{e}$	M1A1	2
	States eigenva leading diagor		Eigenvalues of \mathbf{C} are -1 , 1 and 2	B1	
	Finds eigenved cross-product M1A1 for first A1 for the othe	or equations. t correct and	$\lambda = -1: \mathbf{e}_{1} = \begin{vmatrix} i & j & k \\ 0 & -1 & 3 \\ 0 & 2 & 2 \end{vmatrix} = \begin{pmatrix} -8 \\ 0 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	M1A1	
			$\lambda = 1: \mathbf{e}_2 = \begin{vmatrix} i & j & k \\ -2 & -1 & 3 \\ 0 & 0 & 2 \end{vmatrix} = \begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$		
			$\lambda = 2: \mathbf{e}_{3} = \begin{vmatrix} i & j & k \\ -3 & 1 & 3 \\ 0 & -1 & 2 \end{vmatrix} = \begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix}$	A1	4
	Uses $\mathbf{De} = \mu \mathbf{e}$.		$\mathbf{D} \begin{pmatrix} 1\\6\\3 \end{pmatrix} = \begin{pmatrix} -2\\-12\\-6 \end{pmatrix} = -2 \begin{pmatrix} 1\\6\\3 \end{pmatrix}$	M1A1	
	States eigenva	lue.	Eigenvalue is -2.	A1	3
	Recognises that eigenvector co and D and		CD has an eigenvector $\begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix}$	B1	
	states the correction eigenvalue.	esponding	and the corresponding eigenvalue is $-2 \times 2 =$	e −4. B1√	2

	Page 10			yllabus 9231	apac	
Qu No	Comn	nentary	Solution	Marks	A AND Man	id
9 (i)	Uses mean va and integrates		M.V. = $\frac{\int_0^{\ln 5} \frac{1}{2} (e^x + e^{-x}) dx}{\ln 5 - 0} = \frac{\left[\frac{1}{2} (e^x - e^{-x})\right]_0^{\ln 5}}{\ln 5}$	M1A1	ana Cambr Mar	30
	Substitutes lir evaluates.	nits and	$=\frac{\frac{1}{2}\left(5-\frac{1}{5}\right)}{\ln 5}=\frac{12}{5\ln 5} (=1.49)$	M1A1	4	
(ii)	Differentiates $1 + (y')^2$.	and finds	$y' = \frac{1}{2} \left(e^{x} - e^{-x} \right) \Longrightarrow 1 + (y')^{2} = \left\{ \frac{1}{2} \left(e^{x} + e^{-x} \right) \right\}$	} ² M1A1		
	Integrates and	l obtains result.	$s = \frac{1}{2} \int_{0}^{\ln 5} (e^{x} + e^{-x}) dx = \frac{1}{2} \left[e^{x} - e^{-x} \right]_{0}^{\ln 5}$ $= \frac{1}{2} \left[5 - \frac{1}{5} \right] = \frac{12}{5}$	M1A1		
(iii)	Uses surface a	area formula.	$S = 2\pi \int_0^{\ln 5} \frac{1}{2} \left(e^x + e^{-x} \right) \cdot \frac{1}{2} \left(e^x + e^{-x} \right) dx$	M1	4	
	Integrates.		$= \frac{\pi}{2} \int_0^{\ln 5} (e^{2x} + 2 + e^{-2x}) dx$ $= \frac{\pi}{2} \left[\frac{e^{2x}}{2} + 2x - \frac{e^{-2x}}{2} \right]_0^{\ln 5}$	M1		
	Substitutes lin	nits and	$= \frac{\pi}{2} \left\{ \left[\frac{25}{2} + 2\ln 5 - \frac{1}{50} \right] - \left[\frac{1}{2} + 0 - \frac{1}{2} \right] \right\}$	A1		
	evaluates.		$= \pi \left(\frac{156}{25} + \ln 5 \right) (=24.7)$	A1	4	[12]

	Page 11		k Scheme: Teachers' version S EVEL – October/November 2011	Syllabus 9231	apac	
Qu No	Comm	nentary	Solution	Syllabus 9231 Marks B1 B1 B1	Nar	hbrid
0	C:		Closed loop through (5,0) and $(1,\pi)$	B1	3	19
	Straight line		Correct shape near $(1,\pi)$ Perpendicular to initial line , through $(2,0)$	B1 B1		
	Strangin mic		$\Rightarrow (3 + 2\cos\theta)\cos\theta = 2$	DI		
	Forms quadrat usual form.	tic equation in	$\Rightarrow 2\cos^2\theta + 3\cos\theta - 2 = 0 \text{ (aef)}$	M1		
			$\Rightarrow (2\cos\theta - 1)(\cos\theta + 2) = 0$			
	Solves quadrat	tic equation.	$\Rightarrow \cos\theta = 0.5 \text{ (since } \cos\theta > 0)$	A1		
	Writes down p intersection.	points of	Intersections at $\left(4, \frac{\pi}{3}\right)$ and $\left(4, -\frac{\pi}{3}\right)$.	A1A1	4	
			Calling points of intersection A and B and the p O. Required area is two congruent sectors betw and C plus triangle OAB .			
	Finds required	l area.	Two sectors $= 2 \times \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} (9 + 12\cos\theta + 4\cos^2\theta)$	<i>θ</i>)dθ M1		
			$= \int_{\frac{\pi}{3}}^{\pi} (11 + 12\cos\theta + 2\cos 2\theta)d\theta$	A1		
			$= \left[11\theta + 12\sin\theta + \sin 2\theta\right]_{\frac{\pi}{3}}^{\pi}$	M1		
			$=\frac{22\pi}{3}-\frac{13\sqrt{3}}{2}=(11.78)$	A1		
			Triangle = $2\sqrt{3} \times 2 = 4\sqrt{3} = (6.928)$	B1		
			Total Area = $\frac{22\pi}{3} - \frac{5\sqrt{3}}{2} = (18.708 = 18.7 (3sf))$) A1	6	[13]

	Page 12	Mark Scheme: Teachers' versionSyllabGCE A LEVEL – October/November 20119237			oapaCan Mar	
Qu No	Commentary		Solution	Marks	Mar	Ibrid
11	EITHER					30
	Verifies that ω	is a root.	$\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)^5 + 1 = \cos\pi + i\sin\pi + 1 = 0$	B1		
	Factorises.		$(\omega^5 + 1) = (\omega + 1)(\omega^4 - \omega^3 + \omega^2 - \omega + 1) = 0$			
			$\omega \neq -1 \Longrightarrow \omega^4 - \omega^3 + \omega^2 - \omega + 1 = 0$ $\Rightarrow \omega^4 - \omega^3 + \omega^2 - \omega = -1$	B1	2	
				DI	2	
			$\omega = \cos\frac{\pi}{5} + i\sin\frac{\pi}{5}$			
	Finds ω^4		$\Rightarrow \omega^4 = \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} = -\cos\frac{\pi}{5} + \sin\frac{\pi}{5}$	M1		
	and subtracts.		$\Rightarrow \omega - \omega^4 = 2\cos\frac{\pi}{5}$	A1		
	Finds ω^3		$\omega^3 = \cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}$			
	and ω^2		$\omega^{2} = \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5} = \cos\frac{3\pi}{5} - i\sin\frac{3\pi}{5}$	M1		
	and subtracts		$\omega^3 - \omega^2 = 2\cos\frac{3\pi}{5}$	A1	4	
			$-2\cos\frac{\pi}{5} - 2\cos\frac{3\pi}{5} = -1 \Longrightarrow \cos\frac{\pi}{5} + \cos\frac{3\pi}{5} =$	$=\frac{1}{2}$ M1A1		
			$\cos\frac{\pi}{5}\cos\frac{3\pi}{5} = \frac{1}{4}(\omega - \omega^4)(\omega^3 - \omega^2)$	M1		
			$=\frac{1}{4}(\omega^4-\omega^3-\omega^7+\omega^6)$			
			$=\frac{1}{4}(\omega^4 - \omega^3 + \omega^2 - \omega) = -\frac{1}{4}$	A1	4	
			Equation with roots $\cos\frac{\pi}{5}$ and $\cos\frac{3\pi}{5}$ is:			
	Finds required quadratic equation.		$x^{2} - \frac{1}{2}x - \frac{1}{4} = 0$ or $4x^{2} - 2x - 1 = 0$	M1		
	Solves for <i>x</i> .		$\Rightarrow x = \frac{2 \pm 2\sqrt{5}}{8}$	M1A1		
	States required	value.	$\Rightarrow \cos\frac{\pi}{5} = \frac{1+\sqrt{5}}{4} (\text{since } 0 < \cos\frac{\pi}{5} < 1)$	A1	4	[14]

	Page 13	Mark Scheme: Teachers' versionSyllaGCE A LEVEL – October/November 2011923				er er	
		GCE A	LEVEL - October/November 2011	923 ⁻		aC.	X
Qu No	Commentary		Solution		Marks	abaCambridg	
11	OR						20
	Differentiates		$z = x^2 y \Longrightarrow \frac{dz}{dx} = x^2 \frac{dy}{dx} + 2xy$		M1		
	twice.		$\Rightarrow \frac{d^2 z}{dx^2} = x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y$		A1		
	Rearranges LHS of DE.		$\therefore x^{2} \frac{d^{2} y}{dx^{2}} + 4x(1+x)\frac{dy}{dx} + (2+8x+4x^{2})y =$		M1		
			$\left(x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y\right) + 4\left(x^2 \frac{dy}{dx} + 2xy\right) + 4\left(x^2 \frac{dy}{dx} + 2xy\right) + 4\left(x^2 \frac{dy}{dx} + 2y\right) + 4\left(x^2 \frac{dy}{dx} + 2y$	$4x^2y$			
			$=\frac{d^2z}{dx^2} + 4\frac{dz}{dx} + 4z = 8x^2$	(AG)	A1	4	
	Finds and solves AQE.		$m^{2} + 4m + 4 = 0 \Longrightarrow (m+2)^{2} = 0 \implies m = -2$		M1		
	States CF		CF: $z = Ae^{-2x} + Bxe^{-2x}$		Al		
	States form of PI.		$PI: z = ax^2 + bx + c$				
	Differentiates twice,		$\Rightarrow z' = 2ax + b \Rightarrow z'' = 2a$		M1		
	substitutes		$2a + 8ax + 4b + 4ax^2 + 4bx + 4c = 8x^2$		A1		
	and equates coefficients.		2a + 4b + 4c = 0		M1		
			8a + 4b = 0				
			4 <i>a</i> = 8				
	Solves.		a = 2 $b = -4$ $c = 3$		A1		
	States GS for $z - x$.		$z = Ae^{-2x} + Bxe^{-2x} + 2x^2 - 4x + 3$		M1		
	States GS for $y-x$.		$y = \frac{A}{x^2}e^{-2x} + \frac{B}{x}e^{-2x} + 2 - \frac{4}{x} + \frac{3}{x^2}$		A1	8	
	Considers the effect of $x \to \infty$.		As $x \to \infty$, e^{-2x} , $\frac{1}{x}$ and $\frac{1}{x^2} \to 0$		M1		
			$\therefore y \rightarrow 2$		A1	2	[14]