MANN, PARAS

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/11

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	er
	GCE A LEVEL – May/June 2012	9231	100-

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus
-	GCE A LEVEL – May/June 2012	9231

Page 3	Mark Scheme: Teachers' Version	Syllabus	
	GCE A LEVEL – May/June 2012	9231	
The following abbreviations may be used in a mark scheme or used on the scripts:			
AEF	Any Equivalent Form (of answer is equally acceptable)	Tidge	
AG	Answer Given on the question paper (so extra checking the detailed working leading to the result is valid)	9231 d on the scripts:	
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
CWO	Correct Working Only – often written by a 'fortuitous' ans	wer	
ISW	Ignore Subsequent Working		
MR	Misread		
PA	Premature Approximation (resulting in basically correct accurate)	work that is insufficiently	
sos	See Other Solution (the candidate makes a better attemption)	ot at the same question)	
SR	Special Ruling (detailing the mark to be given for a special where some standard marking practice is to be		

Penalties

particular circumstance)

- MR -1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

		my
Page 4	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

Qu No	Commentary	Solution	Marks	Annibrio 2	tal
1	States $\sum \alpha$ and $\sum \alpha \beta$	$\sum \alpha = 7 \sum \alpha \beta = 2$	B1		6.co
		$\sum \alpha^2 = 7^2 - 2 \times 2 = 45$	B1	2	13
	Uses formula for $\sum \alpha^3$	$\sum \alpha^3 = 7\sum \alpha^2 - 2\sum \alpha + 9$	M1		
	to obtain result.	= 315-14+9 = 310	A1A1	3	[5]
2	(States proposition.)	$(P_n: 4^n > 2^n + 3^n)$			
	Proves base case.	Let $n = 2$, $16 > 4 + 9 \Rightarrow P_2$ is true.	B1		
	States inductive	Assume P_k is true $\Rightarrow 4^k > 2^k + 3^k$	B1		
	hypothesis. Proves inductive step.	$4^{k+1} = 4.4^k > 4(2^k + 3^k) = 4.2^k + 4.3^k$	M1		
		$> 2.2^k + 3.3^k = 2^{k+1} + 3^{k+1}$ $\therefore P_k \Rightarrow P_{k+1}$	A1		
	States conclusion.	Hence result true, by PMI, for all integers $n \ge 2$.	A1 (CWO)	5	[5]
3	Proves initial result.	$f(r-1) - f(r) = \frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)}$	M1		
		$= \frac{r+2-r}{r(r+1)(r+2)} = \frac{2}{r(r+1)(r+2)} $ (AG)	A1	2	
	Sets up method of differences.	$\sum_{1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{2} \left\{ \frac{1}{1 \times 2} - \frac{1}{2 \times 3} \right\} \cdots \cdots$	M1A1		
		$+\frac{1}{2}\left\{\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right\}$			
	Shows cancellation to get result.	$= \frac{1}{4} - \frac{1}{2} \left\{ \frac{1}{(n+1)(n+2)} \right\} $ (OE)	A1	3	
	States sum to infinity.	$\therefore \sum_{1}^{\infty} \frac{1}{r(r+1)(r+2)} = \frac{1}{4}$	A1√	1	[6]
	'Non hence' method for last two parts	$\frac{1}{r(r+1)(r-2)} = \frac{1}{2r} - \frac{1}{(r+1)} + \frac{1}{2(r+2)}$	(M1)		
	i.e. penalty of 1 mark.	$\Rightarrow \cdots \Rightarrow \frac{1}{2} - \frac{1}{2} + \frac{1}{4} \dots + \frac{1}{2(n+1)} - \frac{1}{(n+1)} + \frac{1}{2(n+2)}$	(A1)		
		$= \frac{1}{4} - \frac{1}{2} \left\{ \frac{1}{(n+1)(n+2)} \right\} $ (OE)	(A1)	(3)	
		$\therefore \sum_{1}^{\infty} \frac{1}{r(r+1)(r+2)} = \frac{1}{4}$	(A1√)	(1)	

		Mary
Page 5	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

	T	T		0	
4	Draws sketch of <i>C</i> .	Shows $(4,0)$ and $(0,\pi)$ lie on C . Correct shape. (Full cardioid is B1 unless clear evidence of plotting up to 2π or $-\pi$ to π .)	B1 B1	ambrig	de.cc
	Uses $\frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$	$\frac{1}{2}\int_0^{\pi} (4+8\cos\theta+4\cos^2\theta)d\theta$	M1		111
	Uses double angle formula.	$= \int_0^{\pi} (2 + 4\cos\theta + 2\cos^2\theta) d\theta$			
		$= \int_0^{\pi} (3 + 4\cos\theta + \cos 2\theta) d\theta$	M1		
	Integrates and obtains area.	$= \left[3\theta + 4\sin\theta + \frac{\sin 2\theta}{2} \right]_0^{\pi} = 3\pi$ (A1 for correct integral)	A1A1 CWO	4	
	Finds areas.	$\frac{3\pi}{5} + 4\sin\frac{\pi}{5} + \sin\frac{\pi}{5}\cos\frac{\pi}{5} = 4.712$	M1A1		
		$3\pi - 4.712 = 4.713$	A1	3	[9]
5	Identifies matrices P and D .	$\mathbf{P} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & -1 & -3 \\ -2 & 3 & 5 \end{pmatrix} \mathbf{D} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	B1B1		
	Finds inverse of P .	Det P = 1	B1		
		$\mathbf{P}^{-1} = \text{Adj } \mathbf{P} = \begin{pmatrix} 4 & 11 & 5 \\ 1 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$	M1A1		
	Uses appropriate result to obtain A . (First mark can be implied by correct working.)	$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D} \implies \mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ $\mathbf{A} = \begin{pmatrix} 0 & -1 & 2 \\ -1 & -1 & -3 \\ -2 & 3 & 5 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 4 & 11 & 5 \\ 1 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} 4 & 11 & 5 \end{pmatrix}$	M1		
		$= \begin{pmatrix} 0 & -1 & 4 \\ -1 & -1 & -6 \\ 2 & 3 & 10 \end{pmatrix} \begin{pmatrix} 4 & 11 & 5 \\ 1 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 & 4 & 2 \\ \end{pmatrix}$	M1A1√		
		$= \begin{pmatrix} 3 & 4 & 2 \\ -11 & -27 & -13 \\ 21 & 54 & 26 \end{pmatrix}$	A1	9	[9]
5	Alternative Approach:	Use of $\mathbf{A}\mathbf{e} = \lambda \mathbf{e}$	(M1)		
	$\mathbf{A} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$	Obtains 3 sets of 3 linear equations: One set Other two sets	(M1A1) (A1A1)		
		Solves one set Solves other sets	(M1A1) (A1A1)	(9)	[9]

		man
Page 6	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

				S.	
6	Obtains fifth roots of	$1 = \cos(2k\pi) + i\sin(2k\pi) k = 0, 1, 2, 3, 4.$	M1	Mon	
	unity by de M's Thm.	$\theta = \left(\frac{2k\pi}{5}\right)$ $k = 0, 1, 2, 3, 4.$	A1	Cambrid	Se.
	Rewrites	$(z+1)^5 = z^5 \Rightarrow \frac{(z+1)^5}{z^5} = 1 \Rightarrow \left(\frac{z+1}{z}\right)^5 = 1$			OH
		$\frac{z+1}{z} = \operatorname{cis}\left(\frac{2k\pi}{5}\right) \Longrightarrow z+1 = z\operatorname{cis}\left(\frac{2k\pi}{5}\right)$	M1		
	and factorises.	$\Rightarrow z \left(1 - \operatorname{cis} \left(\frac{2k\pi}{5} \right) \right) = -1$	A1		
	Isolates z.	$\Rightarrow z = \frac{-1}{1 - \operatorname{cis}\left(\frac{2k\pi}{5}\right)} = \frac{-\left(\operatorname{cis}\left(-\frac{k\pi}{5}\right)\right)}{\operatorname{cis}\left(-\frac{k\pi}{5}\right) - \operatorname{cis}\left(\frac{k\pi}{5}\right)}$	M1A1		
	Obtains purely imaginary denominator	$= \frac{-\cos\left(\frac{k\pi}{5}\right) + i\sin\left(\frac{k\pi}{5}\right)}{-2i\sin\left(\frac{k\pi}{5}\right)} = -\frac{1}{2} + \frac{1}{2i}\cot\left(\frac{k\pi}{5}\right) k = 1, 2, 3,$	A1		
		(Alternatively for the above three marks – rationalise denominator.)			
	and obtains result.	$= -\frac{1}{2} \left(1 + i \cot \left(\frac{k\pi}{5} \right) \right) k = 1, 2, 3, 4. (AG)$	A1		
		Observes that original equation is a quartic with real coefficients, so roots occur in conjugate pairs and $k = 0$ must			
		be rejected.	B1	7	[9]

		Mary
Page 7	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

_	T	T		·0.	
7	Reduces M_1 to echelon form.	$ \begin{pmatrix} 1 & 1 & 1 & 4 \\ 2 & 1 & 4 & 11 \\ 3 & 4 & 1 & 9 \\ 4 & -3 & 18 & 37 \end{pmatrix} \longrightarrow \dots \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	M1A1	ambrio	de con
	Finds. $Dim(K_1)$	$Dim(K_1) = 4 - 2 = 2$ (AG)	A1		
	Reduces \mathbf{M}_2 to echelon form.	$ \begin{bmatrix} 1 & 1 & 1 & -1 \\ 2 & 3 & 0 & 1 \\ 3 & 4 & 1 & 0 \\ 4 & 5 & 2 & 0 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} $ (aef)	A1		
	Finds $Dim(K_2)$	$Dim(K_2) = 4 - 3 = 1$ (AG)	A1	5	
	Obtains basis for K_1 .	x + y + z + 4t = 0 $-y + 2z + 3t = 0$	M1		
		Legitimately obtains:			
		Basis for K_1 is $ \left\{ \begin{pmatrix} -3 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -7 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\} $ (OE)	A1 A1		
	Obtains basis for $K_{2,}$	x + y + z - t = 0	M1		
		y - 2z + 3t = 0			
		t = 0 Legitimately obtains:			
	and shows $K_2 \subset K_1$.	Basis for K_2 is $\left\{ \begin{pmatrix} -3\\2\\1\\0 \end{pmatrix} \right\}$ (OE) $\Rightarrow K_2 \subset K_1$	A1	5	[10]
8	Forms AQE and solves. Writes CF.	$m^2 + 2m + 5 = 0 \implies m = -1 \pm 2i$ CF: $y = e^{-x} (A \cos 2x + B \sin 2x)$	M1A1 A1		
	Correct form for PI and differentiates twice.	$y = ke^{-2x} \Rightarrow y' = -2ke^{-2x} \Rightarrow y'' = 4e^{-2x}$	M1		
	Substitutes. Writes PI.	$\Rightarrow 4k - 4k + 5k = 10 \Rightarrow k = 2$ PI: $y = 2e^{-2x}$	M1 A1		
	Writes GS.	GS: $y = e^{-x} (A \cos 2x + B \sin 2x) + 2e^{-2x}$	A1		
	Uses $y(0) = 5$ to find A . Uses $y'(0) = 1$ to find B .	$y = 5, x = 0 \Rightarrow 5 = A + 2 \Rightarrow A = 3$ $y' = -e^{-x} (A \cos 2x + B \sin 2x)$	B1		
		$+e^{-x} (-2A \sin 2x + 2B \cos 2x) - 4e^{-2x}$ y' = 1, x = 0 \Rightarrow 1 = -3 + 2B - 4 \Rightarrow B = 4	M1 A1		
	Writes particular solution.	$\therefore y = e^{-x} (3 \cos 2x + 4 \sin 2x) + 2e^{-2x}$	A1 CAO	11	[11]

		my
Page 8	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

9(i) and (ii)	Possible approach for first two parts together.	Writes $y = \frac{2x^2 + 2x + 3}{x^2 + 2} = 1 + \frac{(x+1)^2}{x^2 + 2}$ States $\frac{(x+1)^2}{x^2 + 2} \ge 0 \Rightarrow y \ge 1$ From this it is clear that $(-1, 1)$ is a turning point. Writes $y = \frac{2x^2 + 2x + 3}{x^2 + 2} = \frac{5}{2} - \frac{(x-2)^2}{2(x^2 + 2)}$	(MIAI)	AMBRIC	Ge.com
	(i) can come after finding turning points: Continuous function (implied by graph)	States $y = \frac{1}{x^2 + 2} = \frac{1}{2} - \frac{1}{2(x^2 + 2)}$ States $\frac{(x-2)^2}{2(x^2 + 2)} \ge 0 \Rightarrow y \le \frac{5}{2}$ From this it is clear that $(2, 2\frac{1}{2})$ is the other turning point.	(B1) (B1) (A1) (M1) (M1A1)	(7)	
	⇒ (2,2.5) Max and (-1,1) Min ⇒ $1 \le y \le \frac{5}{2}$ (AG) N.B. Award B1 if Max and Min assumed without proof. i.e. 1/4.		(A1)	(4)	

		my
Page 9	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

				C	
9	Forms quadratic equation in x.	$yx^{2} + 2y = 2x^{2} + 2x + 3$ $\Rightarrow (y-2)x^{2} - 2x + (2y-3) = 0$	M1 A1	ambrie	toe
	Uses discriminant to obtain condition for real roots.	For real $x \cdot 4 - 4(y - 2)(2y - 3) \ge 0$ $\Rightarrow (2y - 5)(y - 1) \le 0$			COM
	Differentiates and	$\Rightarrow 1 \le y \le \frac{5}{2} (AG)$ $y' = 0$	A1	4	
	equates to zero. Solves equation.	$\Rightarrow (x^2 + 2)(4x + 2) - 2x(2x^2 + 2x + 3) = 0$ \Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = -1 or x = 2	M1		
	333333	(Or substitutes $y = 1$ and $\frac{5}{2}$ in equation of C .)			
	States coordinates of turning points.	Turning points are $(-1, 1)$ and $\left(2, 2\frac{1}{2}\right)$	A1A1	3	
	Expresses <i>y</i> in an appropriate form. (May	$y = 2 + \frac{2x - 1}{x^2 + 2}$	M1		
	alternatively divide numerator and denominator by x^2 .	$As x \to \pm \infty y \to 2 \therefore y = 2$	A1	2	
	Finds <i>y</i> -intercept and intersection with	Shows $\left(0, 1\frac{1}{2}\right)$ and $\left(\frac{1}{2}, 2\right)$	В1		
	y = 2. Completes graph.	Completely correct graph.	B1	2	[11]

		www
Page 10	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

				60	
10	Differentiates and squares.	$y' = \frac{1}{\sqrt{3}} x^{\frac{1}{2}} \Rightarrow (y')^2 = \frac{x}{3}$	В1	Cambrid	te
	Uses formula for arc length.	$s = \int_0^3 \sqrt{1 + \frac{x}{3}} dx$	M1		COM
	Integrates and obtains value.	$= \left[2\left(1 + \frac{x}{3}\right)^{\frac{3}{2}}\right]_{0}^{3} = 4\sqrt{2} - 2 = 2(2\sqrt{2} - 1) (AG)$	A1A1	4	
	Uses formula for <i>x</i> -coordinate of centroid.	$\overline{x} = \frac{\int_0^3 \frac{2}{3\sqrt{3}} x^{\frac{5}{2}} dx}{\int_0^3 \frac{2}{3\sqrt{3}} x^{\frac{3}{2}} dx}$	M1		
	Integrates both expressions and obtains value.	$= \frac{\int_0^1 \sqrt{3\sqrt{3}} x^2 dx}{\left[\frac{2}{7} x^{\frac{7}{2}}\right]_0^3} = \frac{15}{7} (=2.14)$	A1A1 A1		
	Uses formula for y-coordinate of centroid.	$\overline{y} = \frac{\int_0^3 \frac{1}{2} \times \frac{4}{27} x^3 dx}{\int_0^3 \frac{2}{3\sqrt{3}} x^{\frac{3}{2}} dx}$	M1		
	Integrates both expressions and obtains value.	$= \frac{\frac{2}{27} \left[\frac{x^4}{4}\right]_0^3}{\frac{2}{3\sqrt{3}} \left[\frac{2}{5}x^{\frac{5}{2}}\right]_0^3} = \frac{5}{8} (=0.625)$	A1 A1	7	[11]

Page 11	Mark Scheme: Teachers' version	Syllabus	er
	GCE A LEVEL – May/June 2012	9231	200

	1			6	
11	EITHER Note:	$I = \int e^x \sin x dx = -e^x \cos x + \int e^x \cos x dx$	M1	Mbri	
	(1) the parts can be either way round.	$= -e^{x} \cos x + e^{x} \sin x - \int e^{x} \sin x dx$	A1 M1	Cambrid	Se.C.
	(2) Insertion of limits in	$\therefore 2I = e^{x}(\sin x - \cos x)$ $\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi$	1411		Oli
	$[e^x \sin x]$ causes the term to vanish.	$\therefore \int_0^{\pi} e^x \sin x dx = \left[\frac{1}{2} e^x (\sin x - \cos x) \right]_0^{\pi}$			
	to runnin	$= \frac{e^{\pi}}{2} - \left(-\frac{1}{2}\right) = \frac{1 + e^{\pi}}{2} (AG)$	A1	4	
		$I_n = \int_0^\pi e^x \sin^n x dx$			
		$= \left[\sin^n x . e^x \right]_0^{\pi} - \int_0^{\pi} e^x (n \sin^{n-1} x \cos x) dx$	M1		
		$= \begin{cases} 0 - \left[n \sin^{n-1} x \cos x . e^{x} \right]_{0}^{\pi} \\ + n \int_{0}^{\pi} e^{x} (\cos^{2} x (n-1) \sin^{n-2} x - \sin^{n-1} x \sin x) dx \end{cases}$	A1		
		$= 0 + n(n-1) \int_0^{\pi} e^x \cos^2 x \sin^{n-2} x dx - nI_n (AG)$	A1		
		$= n(n-1) \int_0^{\pi} e^x (1-\sin^2 x) \sin^{n-2} x dx - nI_n$	M1A1		
		$\therefore (n+1)I_n = n(n-1)I_{n-2} - n(n-1)I_n$			
		$\therefore (n(n-1)+n+1)I_n = n(n-1)I_{n-2}$			
		$\therefore (n^2 + 1)I_n = n(n-1)I_{n-2}$ (AG)	A1	6	
		$I_5 = \frac{20}{26}I_3 = \frac{20}{26} \times \frac{6}{10}I_1$	M1		
		$\Rightarrow I_5 = \frac{6}{13} \times \left(\frac{1 + e^{\pi}}{2}\right) = \frac{3}{13} \left(1 + e^{\pi}\right)$	A1		
		Mean value = $\frac{\int_0^{\pi} e^x \sin^5 x dx}{\pi - 0} = \frac{3}{13\pi} (1 + e^{\pi})$	M1A1	4	[14]

		my
Page 12	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

				C	
11	OR Obtains direction of common perpendicular.	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -1 & 1 \\ 0 & 1 & m-1 \end{vmatrix} = -m\mathbf{i} + 4(1-m)\mathbf{j} + 4\mathbf{k}$	M1A1	Cambridge	ve.cs
	Uses result for shortest distance between lines.	$\frac{\begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix} \begin{pmatrix} -m \\ 4-4m \\ 4 \end{pmatrix}}{\sqrt{m^2 + 16(1-2m+m^2) + 16}} = 3$	M1A1		Sill
	Solves equation.	$\Rightarrow \dots \Rightarrow 19m^2 - 40m + 4 = 0$			
		$\Rightarrow (19m-2)(m-2) = 0$	M1		
		$\Rightarrow m = 2$, since m is an integer. (AG)	A1	7	
	Finds relevant vectors.	$\mathbf{CA} = \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix} \text{ and } \mathbf{CD} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ or } \mathbf{AD} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$	B1		
	Use of cross-product.	$\begin{vmatrix} \frac{1}{\sqrt{17}} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 1 \\ 1 & 0 & -4 \end{vmatrix} = \frac{1}{\sqrt{17}} \begin{pmatrix} -4 \\ 1 \\ -1 \end{pmatrix}$	M1		
	Obtains shortest distance.	$\frac{1}{\sqrt{17}}\sqrt{4^2+1^2+1^2} = \sqrt{\frac{18}{17}} (=1.03)$	A1	3	
	Finds 2 nd vector in BCD (CD may already have	$\mathbf{BC} = 3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$	B1		
	been found.) Finds normal vector to BCD. (Normal to ACD	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & 5 \\ 0 & 1 & 1 \end{vmatrix} = -6\mathbf{i} - 3\mathbf{j} + 3\mathbf{k} \sim 2\mathbf{i} + \mathbf{j} - \mathbf{k}$	M1		
	already found.) Finds angle between planes = angle between	$\cos \theta = \frac{(4i - j + k) \cdot (2i + j - k)}{\sqrt{16 + 1 + 1}\sqrt{4 + 1 + 1}} = \frac{6}{\sqrt{18}\sqrt{6}} = \frac{1}{\sqrt{3}}$	M1		
	normal vectors.	∴ Angle between planes = $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (AG)	A1	4	[14]

		Mr.
Page 13	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2012	9231

	<u> </u>			C	
11	OR Alternatives for middle part:			Cambridge	toe.
	Or (a) Vector from D to any point on AC	$\begin{pmatrix} 1+t \\ -1 \\ -5-4t \end{pmatrix}$	(B1)		OH
	Uses orthogonality to obtain <i>t</i> .	$\begin{pmatrix} 1+t \\ -1 \\ -5-4t \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix} = 0 \Rightarrow t = -\frac{21}{17}$ $\frac{1}{\sqrt{17}} \sqrt{4^2 + 1^2 + 1^2} = \sqrt{\frac{18}{17}} (=1.03)$	(M1)		
	Finds magnitude of perpendicular.	$\frac{1}{\sqrt{17}}\sqrt{4^2+1^2+1^2} = \sqrt{\frac{18}{17}} (=1.03)$	(A1)	(3)	
	Or (b) Finds length of AD (or CD)	$\left \overrightarrow{AD}\right = \sqrt{27}$	(B1)		
	Finds projection of AD (or CD) onto AC.	$\frac{\begin{vmatrix} -1 & 1 \\ 1 & 0 \\ 5 & -4 \end{vmatrix}}{\sqrt{4^2 + 1^2}} = \frac{21}{\sqrt{17}}$	(M1)		
	Finds perpendicular by Pythagoras.	$\sqrt{27 - \frac{441}{17}} = \sqrt{\frac{18}{17}} (= 1.03)$	(A1)	(3)	