CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

www.papacambridge.com MARK SCHEME for the October/November 2012 series

9231 FURTHER MATHEMATICS

9231/12

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		2.	
Page 2	Mark Scheme	Syllabus Syllabus	r
	GCE A LEVEL – October/November 2012	9231	

Mark Scheme Notes

Marks are of the following three types:

- Cambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. А Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

	Syllabus A er
GCE A LEVEL – October/November 2012 9231	

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt[4]{"}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	GCE A	Mark Scheme A LEVEL – October/November 2012	Syllabus 9231	apar er	
	1				Call	×
Qu No	Comme	entary	Solution	Marks	Par Mark	ridge
1	Re-writes equ	uation	$r\cos\left(\theta - \frac{\pi}{4}\right) = \sqrt{2}$	M1	Pan Mark	
	and uses com angle formula		$r\left(\frac{\cos\theta}{\sqrt{2}} + \frac{\sin\theta}{\sqrt{2}}\right) = \sqrt{2}$	A1		
	Changes to ca	artesian.	$\Rightarrow r\cos\theta + r\sin\theta = 2 \Rightarrow x + y = 2 \text{ or } y = 2 - x$	· A1	3	
	Sketches gra	oh.	Straight line at $-\frac{\pi}{4}$ to the initial line.	B1		
			Point (2,0) clearly indicated.	B1	2	[5]
2 (i)	Uses formula value.	for mean	$\frac{\int_0^4 2x^{\frac{1}{2}} \mathrm{d}x}{4}$	M1		
	Integrates		$= \left[\frac{1}{3}x^{\frac{3}{2}}\right]_{0}^{4} = \frac{8}{3}$	M1A1	3	
(ii)	Uses formula coordinate.	for <i>y</i> -	$\frac{\frac{1}{2}\int_{0}^{4} 4x dx}{\int_{0}^{4} 2x^{\frac{1}{2}} dx}$	M1		
	Integrates.		$=\frac{\left[x^{2}\right]_{0}^{4}}{\left[\frac{4}{3}x^{\frac{3}{2}}\right]_{0}^{4}} = \frac{16\times3}{32} = \frac{3}{2}$	M1A1	3	[6]
3	Solves AQE.		$m^2 + 4m + 13 = 0 \Rightarrow m = -2 \pm 3 i$	M1		
	Finds CF.		CF: $e^{-2t}(A\cos 3t + B\sin 3t)$	A1		
	Form for PI a differentiates		PI: $x = pt^2 + qt + r \Rightarrow \dot{x} = 2pt + q \Rightarrow \ddot{x} = 2p$	M1		
	Compares cer and solves.	fficients	$13p = 26 \Rightarrow p = 2 8p + 13q = 3 \Rightarrow q = -1$ $2p + 4q + 13r = 13 \Rightarrow r = 1$	M1A1		
			GS: $x = e^{-2t} (A \cos 3t + B \sin 3t) + 2t^2 - t + 1$	A1	6	[6]

	Page 5		Mark Scheme	Syllabus	8. U	•
		GCE	A LEVEL – October/November 2012	9231	Pac	
Qu No	Comment	ary	Solution	Marks	Mar	abride
1	Verifies given re Uses method of differences to	esult.	r(r+1)(r+2) - (r-1)r(r+1) = r(r+1)(r+2 - r + r)(r+2) - (r+1)(r+2) - (r+2)(r+2) - (r+2)(r+2) - (r+2)(r+2) - (r+2)(r+2) -	-1) B1	DapaCall Mar	36
	sum first series.		$\frac{1}{3} \{ [f(n) - f(n-1)] + [f(n-1) - f(n-2)] + \dots + [f(1)] \\ = \frac{1}{3} n(n+1)(n+2) (AG) (Award B1 \text{ if}) \}$			
	n		hence'.)			
	Subtracts $\sum_{r=1}^{n} r$ to obtain sum of second		$\sum_{r=1}^{n} r^{2} = \sum_{r=1}^{n} r(r+1) - \sum_{r=1}^{n} r = \frac{n(n+1)(n+2)}{3} - \frac{n(n+1)(n+2)}{2}$ $= \frac{1}{6}n(n+1)(2n+4-3) = \frac{1}{6}n(n+1)(2n+1)$			
	series. Splits series into	two	= -n(n+1)(2n+4-3) = -n(n+1)(2n+1) (1 ² + 2 ² + + n ²) + (2 ² + 4 ² + + (n-1) ²) =	(AG) A1 M1		
	series. Applies sum of s formula to obtain		$\frac{n(n+1)(2n+1)}{6} + \frac{4\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right)n}{6} = \dots = \frac{1}{2}n^2(n+1)$	-1) M1A1	3	[8]
5	Integrates by par obtain reduction		$\int_0^\infty x^n e^{-2x} dx = \left[x^n \frac{-e^{-2x}}{2} \right]_0^\infty + \int_0^\infty n x^{n-1} \frac{e^{-2x}}{2} dx$	M1		
			$=\frac{n}{2}I_{n-1} \qquad (AG)$	A1	2	
	(States proposition	on.)	$\mathbf{P}_{n:} \ I_{n} = \frac{n!}{2^{n+1}}$			
	Proves base case		$n = 1 \qquad I_0 = \int_0^\infty e^{-2x} dx = \left[-\frac{1}{2} e^{-2x} \right]_0^\infty = \frac{1}{2}$	B1		
			$I_1 = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{1!}{2^2}$ \therefore P ₁ true	e. B1		
	Shows $P_k \Rightarrow P_k$	+1•	$P_k: I_k = \frac{k!}{2^{k+1}} \text{ for some integer } k.$	B1		
			$\therefore I_{k+1} = \frac{k+1}{2} \times \frac{k!}{2^{k+1}} = \frac{(k+1)!}{2^{k+2}}$ $\therefore \mathbf{P}_k \Rightarrow \mathbf{P}_{k+1}$	M1A1		
	States conclusion	n	Hence by PMI P_n is true for all positive integers <i>n</i>	A1	6	[8]

Syllabus	1
0004	

	Page 6		Syllabus	9. E	<u> </u>
		GCE A LEVEL – October/November 2012	9231	Paca	Y
Qu No	Commentary	Solution	Marks	Pana Mark	bridge
)	Proves initial result.	$(\cos\theta + i\sin\theta)^4 = \cos 4\theta + i\sin 4\theta$			
		$= c^{4} + 4c^{3}(is) + 6c^{2}(is)^{2} + 4c(is)^{3} + (is)^{4}$	M1		
		$\cos 4\theta = c^4 - 6c^2(1 - c^2) + (1 - c^2)^2$	M1		
		$= 8\cos^4\theta - 8\cos^2\theta + 1 (AG)$	A1	3	
	Verifies any two case (B1)	$\begin{cases} 7 & (7) & 7\\ \cos\frac{12}{7}\pi = \cos\left(-\frac{2}{7}\pi\right) = -\cos\left(\pi + \frac{2}{7}\pi\right) = -\cos\frac{9}{7}\pi \end{cases}$	B1		
	Verifies remaining tw cases (B1)	$\cos \frac{20}{7}\pi = \cos \frac{6}{7}\pi = -\cos \frac{1}{7}\pi = -\cos \frac{15}{7}\pi$ $\cos 4\pi = 1 = -(-1) = -\cos 3\pi$	B1	2	
	Shows roots of	$8\cos^4\theta - 8\cos^2\theta + 1 = -(4\cos^3\theta - 3\cos\theta)$			
	equation to be as given.	$\Rightarrow 8c^4 + 4c^3 - 8c^2 - 3c + 1 = 0 (*)$	M1		
	Siven.	$\Rightarrow \cos{\frac{1}{7}\pi}, \cos{\frac{3}{7}\pi}, \cos{\frac{5}{7}\pi}, -1$ are the roots. (AG)) A1	2	
	States sum of roots o equation.	f Sum of roots of (*) are $\frac{-4}{8} = -\frac{1}{2} \implies \text{Result (AG)}$) M1A1	2	[9]
,	Finds asymptotes to	C. Vertical asymptote $x = 2$.	B1		
		$y = \lambda x + 1 + \frac{2}{x-2} \Rightarrow y = \lambda x + 1$ is oblique asymptote	• M1A1	3	
	Differentiates and	x-2 y' = $\lambda - 2(x-2)^{-2} = 0$ for turning points.	M1A1	_	
	equates to 0.	$\lambda = \frac{2}{(x-2)^2} > 0 \Rightarrow \text{ no turning points if } \lambda < 0.$	A1	3	
		Or $y' = 0 \Rightarrow \lambda x^2 - 4\lambda x + 4\lambda - 2 = 0$ Uses discriminant to show $8\lambda < 0 \Rightarrow$ no T.P.s.	(M1A1) (A1)		
	Sketch of graph. Deduct 1 mark for poor forms at infinity. Deduct 1 mark if intersections with axes not shown.	Axes and asymptotes. LH branch. RH branch. (Indicating intersections with axes at (0,0) and (3,0).)	B1 h B1B1	3	[9]

 Page 7
 Mark Scheme
 Syllabus

 GCE A LEVEL – October/November 2012
 9231

Qu No	Commentary	Solution	Marks	Pa Mark	orido
8	Differentiates.	$\dot{x} = t^2 - \frac{1}{t}$ $\dot{y} = 2t^{\frac{1}{2}}$	B1		bridge:
	Squares and adds.	$\frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{\left(t^2 - \frac{1}{t}\right)^2 + 4t} = \sqrt{\left(t^2 + \frac{1}{t}\right)^2}$	M1A1		
	Uses arc length formula.	$s = \int_{1}^{3} \left(t^{2} + \frac{1}{t} \right) \mathrm{d}t$	M1		
	Integrates.	$=\left[\frac{t^3}{3} + \ln t\right]_1^3$	A1√		
	Obtains result.	$=9 + \ln 3 - \frac{1}{3} = \frac{26}{3} + \ln 3 \qquad (=9.77)$	A1	6	
	Uses surface area formula.	$S = 2\pi \int_{1}^{3} \left(\frac{4}{3} t^{\frac{3}{2}} \left(t^{2} + \frac{1}{t} \right) \right) dt = \frac{8\pi}{3} \int_{1}^{3} \left(t^{\frac{7}{2}} + t^{\frac{1}{2}} \right) dt$	M1		
	Integrates.	$=\frac{8\pi}{3}\left[\frac{2}{9}t^{\frac{9}{2}}+\frac{2}{3}t^{\frac{3}{2}}\right]_{1}^{3}$	A1		
	Inserts limits.	$= \frac{8\pi}{3} \left\{ \left[18\sqrt{3} + 2\sqrt{3} \right] - \left[\frac{2}{9} + \frac{2}{3} \right] \right\}$	M1		
	Obtains result.	$=\pi \left(\frac{160\sqrt{3}}{3} - \frac{64}{27}\right) \qquad (= 283 \text{ or } = 90.0\pi)$			
			A1	4	[10]

Syllabus 9231 Byllabus Byllabyllabus Byllabus Byllabus Byllabus Byllabus Byllabus By Page 8 Mark Scheme GCE A LEVEL – October/November 2012

Qu	Commentary	Solution	Marks	Pa	16.
No	Commentary	Solution	IVILLI KS	Mark	190
)	Finds vector normal to Π .	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 2 \\ 3 & 1 & -2 \end{vmatrix} = 2\mathbf{i} + 8\mathbf{j} + 7\mathbf{k}$	M1A1		hbridge.
	Dot product of this with general point	$\begin{pmatrix} 3+8t\\ 6+5t\\ 12-8t \end{pmatrix} \cdot \begin{pmatrix} 2\\ 8\\ 7 \end{pmatrix} = 138 \text{ or } \begin{pmatrix} 8\\ 5\\ -8 \end{pmatrix} \cdot \begin{pmatrix} 2\\ 8\\ 7 \end{pmatrix} = 0$	A1√ [≜]		
	Finds vector normal to Π. Dot product of this with general point on l1. Deduces result. Cartesian equation of Π. Substitutes general point of l2. Finds value of parameter. Finds p.v. of intersection. Finds distance from point to known point on l.	Independent of $t \Rightarrow$ parallel, or \Rightarrow parallel.	A1	4	
		$\Pi: 2x + 8y + 7z = 21$	B1		
	Cartesian equation	Sub. $x = 5 + 2s$, $y = -4 - s$, $z = 7 + s$	M1 A1		
	of <i>П</i> .	\Rightarrow s = -2 and line meets Π at point with p.v. $\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$	A1 A1	4	
	point of l_2 . Finds value of parameter.	Take $(9,11,2)$ as A , $(3,6,12)$ as B and let C be foot of perpendicular from A to l .			
		$AB = \sqrt{6^2} + 5^2 + 10^2 = \sqrt{161}$	B1		
		BC = $\frac{1}{\sqrt{(6^2 5^2 + 8^2)(6i + 5j - 10k)(8i + 5j - 8k)}}} = \frac{153}{\sqrt{153}} = \sqrt{153}$	M1		
	point to known	$\sqrt{(0.5 + 6)(01 + 5)^{-10} k}(61 + 5)^{-6} k}$	A1	4	[12]
		$AC = \sqrt{161 - 153} = \sqrt{8 \text{ or } 2\sqrt{2}} (= 2.83)$	A1√		
	perpendicular from	Alternatively:			
	given point to <i>l</i> .	$5 + 2s = 2 + \lambda + 3\mu$	(B1)		
		$-4-s=3-2\lambda+\mu$			
	hypotenuse side	$7 + s = -1 + 2\lambda - 2\mu$	(M1A1)		
	(must be real).	$\Rightarrow s = -2$, $\Rightarrow \lambda = 2$, $\mu = -1$	(WITAT)		
	equations in three unknowns for the intersection of	and line meets Π at point with p.v. $\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$	(A1)		
	Finds p.v. of intersection.				

 Page 9
 Mark Scheme
 Syllabus

 GCE A LEVEL – October/November 2012
 9231

Qu No	Commentary	Solution	Marks	Part Mark	1000
9	Finds vector \overrightarrow{BA} .	$\overrightarrow{BA} = 6\mathbf{i} + 5\mathbf{j} - 10\mathbf{j}$	B1		bridge.cc
		$\frac{1}{\sqrt{8^2 + 5^2 + 8}} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 5 & -10 \\ 8 & 5 & -8 \end{vmatrix}$	M1A1		
		$=\sqrt{\frac{1224}{153}} = \sqrt{8}$ or $2\sqrt{2}$ (=2.83)	A1	(4)	
		Alternatively: (A)			
	Finds distance from point to known point on <i>l</i> .	Take $(9,11,2)$ as A , $(3,6,12)$ as B and let C be foot of perpendicular from A to l .			
	Finds distance along <i>l</i> from	$AB = \sqrt{6^2 + 5^2 + 10^2} = \sqrt{161}$	(B1)		
	known point to foot of perpendicular from given point to <i>l</i> .	$BC = \frac{1}{(C_1^2 + 5_2^2 - 10k)(2_2^2 + 5_2^2 - 2k)}$	(M1)		
		$\frac{1}{\sqrt{8^2 + 5^2 + 8^2}} (6\mathbf{i} + 5\mathbf{j} - 10\mathbf{k})(8\mathbf{i} + 5\mathbf{j} - 8\mathbf{k})$ 153	(A1)		
	F.t. on non-hypotenuse side (must be real).	$= \frac{153}{\sqrt{153}} = \sqrt{153}$ AC = $\sqrt{161 - 153} = \sqrt{8}$ or $2\sqrt{2}$ (= 2.83)	(A1∜)	(4)	
	Finds vector . \overrightarrow{AC}	(B) $\overrightarrow{AC} = \begin{pmatrix} 8t-6\\5t-5\\10-8t \end{pmatrix}$	(B1)		
	Uses \overrightarrow{AC} perpendicular to <i>l</i> to find <i>t</i> .	$\begin{pmatrix} 8t-6\\5t-5\\10-8t \end{pmatrix} \cdot \begin{pmatrix} 8\\5\\-8 \end{pmatrix} = 0 \Longrightarrow t = 1$	(M1A1)		
	Finds length AC.	$AC = \sqrt{2^2 + 0^2 + 2^2} = \sqrt{8}$	(A1)	(4)	[12]

 Page 10
 Mark Scheme
 Syllabus

 GCE A LEVEL – October/November 2012
 9231

Qu No	Commentary	Solution	Marks	Part	200
<u>No</u> 10	States eigenvalues.	Eigenvalues are 1, 2, 3.	B1	Mark 1	bridge.cc
	Finds eigenvectors.	$\lambda = 1 \mathbf{e}_1 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 4 & -16 \\ 0 & 1 & 3 \end{vmatrix} = \begin{pmatrix} 28 \\ 0 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	M1A1		
		$\lambda = 2 \mathbf{e}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 4 & -16 \\ 0 & 0 & 1 \end{vmatrix} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$	A1		
		$\lambda = 3 \mathbf{e}_3 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 4 & -16 \\ 0 & -1 & 3 \end{vmatrix} = \begin{pmatrix} -4 \\ 6 \\ 2 \end{pmatrix} \sim \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$	A1	4	
	States P and D .	$\mathbf{P} = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}$	B1√ B1√	2	
	Finds inverse of P .	Det $\mathbf{P} = 1 \implies \text{Adj } \mathbf{P} = \mathbf{P}^{-1} = \begin{pmatrix} 1 & -4 & 14 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$	M1A1		
	Finds A ^{<i>n</i>} .	$\mathbf{A}^{n} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ $= \mathbf{P} \begin{pmatrix} 1 & -4 & 14 \\ 0 & 2^{n} & -3.2^{n} \\ 0 & 0 & 3^{n} \end{pmatrix} \text{ or }$	M1A1		
		$ \begin{pmatrix} 1 & 4.2^{\mathbf{n}} & -2.3^{n} \\ 0 & 2^{n} & 3^{n+1} \\ 0 & 0 & 3^{n} \end{pmatrix} \mathbf{P} $	A1	5	
		$= \begin{pmatrix} 1 & [-4+4.2^{n}] & [14-12.2^{n}-2.3^{n}] \\ 0 & 2^{n} & [-3.2^{n}+3^{n+1}] \\ 0 & 0 & 3^{n} \end{pmatrix}$			
	States required limit.	$3^{-n} \mathbf{A}^{n} \to \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix} \text{ as } n \to \infty.$	B1√	1	[13]

	Page 11	GCE A LEVE	Mark Scheme EL – October/November 2012	Syllabi 9231	us i	Part Mark	
Qu No	Co	ommentary	Solution		Marks	Part Mark	bridge.
11	EITHER Substitute α Multiply by α Obtain result		$\alpha \text{ is a root} \Rightarrow \alpha^4 - 3\alpha^2 + 5\alpha - 2 = 0$ $\Rightarrow \alpha^{n+4} - 3\alpha^{n+2} + 5\alpha^{n+1} - 2\alpha^n = 0$ Repeat for β, γ, δ and sum $\Rightarrow S_{n+4} - 3S_{n+2} + 5S_{n+1} - 2S_n = 0 ($		M1 A1	2	
(i)	Uses $\sum \alpha^2 =$ Finds S_4 from		$S_2 = 0 - 2 \times (-3) = 6$ $S_4 = 3 \times 6 - 5 \times 0 + 2 \times 4 = 26$		B1 M1A1	3	
(ii)	$S_{-1} = \frac{\sum \alpha \beta \gamma}{\alpha \beta \gamma \delta}$ Finds S_3 from		$S_{-1} = \frac{-5}{-2} = \frac{5}{2}$ $S_{3} = 3 \times 0 - 5 \times 4 + 2 \times \frac{5}{2} = -15$		M1A1 M1A1		
	Finds S_5 from		$\sum_{5}^{2} S_{5} = 3 \times (-15) - 5 \times 6 + 2 \times 0 = -75$ $\sum_{5}^{2} \alpha^{2} \beta^{3} = S_{2}S_{3} - S_{5}$		M1A1	6	
			$\sum_{n=0}^{\infty} a^n p^n = \frac{5}{2} \frac{5}{3} \frac{5}{5} = 6 \times (-15) - (-75) = -15$		M1 M1A1	3	[14]

Mark Scheme GCE A LEVEL – October/November 2012

U				abus 231	Part Mark	
Qu No	Com	mentary	Solution	Marks	Part Mark	ridge
11	OR					
(i)	Reduces M to	echelon form.	$ \begin{pmatrix} 2 & 1 & -1 & 4 \\ 3 & 4 & 6 & 1 \\ -1 & 2 & 8 & -7 \end{pmatrix} \rightarrow \dots \rightarrow \begin{pmatrix} 2 & 1 & -1 & 4 \\ 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	M1A1		
	Uses dimensi	on theorem.	Dim(M) = 4 - 2 = 2	A1		
(ii)	States basis fo	or <i>R</i> .	Basis for <i>R</i> is $\begin{cases} 2\\ 3\\ -1 \end{cases}, \begin{pmatrix} 1\\ 4\\ 2 \end{pmatrix}$. (OE)	B1		
	Finds cartesia	n equation for R.	$x = 2\lambda + \mu$ $y = 3\lambda + 4\mu \implies 2x - y + z = 0$ $z = -\lambda + 2\mu$	M1A1		
(iii)	Finds basis fo	or null space.	2x + y - z + 4t = 0 y + 3z - 2t = 0 $t = \lambda \text{ and } z = \mu$ $\Rightarrow y = 2\lambda - 3\mu \text{ and } x = -3\lambda + 2\mu$ $\implies Pasis of pull space is \begin{bmatrix} -3\\ 2 \end{bmatrix} \begin{bmatrix} 2\\ -3 \end{bmatrix} (OE)$	M1 A1A1	9	
	Evaluates k.		$\Rightarrow \text{Basis of null space is} \left\{ \begin{array}{c} 2\\0\\1 \end{array} \right\}, \begin{array}{c} -3\\1\\0 \end{array} \right\} \text{(OE)}$ $2 \times 8 - 7 + k = 0 \Rightarrow k = -9$	B1		
	Finds a partic		$5\begin{pmatrix}2\\3\\-1\end{pmatrix}-2\begin{pmatrix}1\\4\\2\end{pmatrix}=\begin{pmatrix}8\\7\\-9\end{pmatrix}$ (OE) (via equations)	M1A1		
	Finds general	solution.	$\mathbf{x} = \begin{pmatrix} 5 \\ -2 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 2 \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \\ 0 \end{pmatrix}.$	M1A1	5	[14]