CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the October/November 2012 series

9231 FURTHER MATHEMATICS

9231/21

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE. GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		2	
Page 2	Mark Scheme	Syllabu	er er
	GCE AS/A LEVEL – October/November 2012	9231	Da

Mark Scheme Notes

Marks are of the following three types:

- Cambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are no lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or ٠ which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabu	er er
	GCE AS/A LEVEL – October/November 2012	9231	The second

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt[4]$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

	Page 4	Mark Schem	ne	Syllabu.	Q.	er	
		GCE AS/A LEVEL – Octobe		9231	B1 B1		
	1					C.	
Question	Mark Schen	ne Details				76	
Number						M	100
1	Find MI of	disc A about O:	$I_{\rm A} = \frac{1}{2} ma^2 + m(4a)^2 [= 0]$	$(22/2)m a^{2}$	D1		~e.
L		disc <i>B</i> about <i>O</i> :	$I_{\rm A} = \frac{1}{2} ma^2 + m(4a) [-(4a)^2] = 0$ $I_{\rm B} = \frac{1}{2} ma^2 + m(6a)^2 [= 0$	$(33/2)ma^2$	B1		
		rod <i>AB</i> about <i>O</i> :	$I_{\rm B} = \frac{1}{2} ma^2 + m(6a)^2 [= 0]$ $I_{\rm rod} = \frac{1}{3} 3m(5a)^2 + 3ma^2$	$[= 28ma^2]$	B1		
		body about <i>O</i> :	$I_{body} = I_A + I_B + I_{rod} = 81\mu$	L	M1 A1	5	[5]
			•				
2 (i)	·	motion for disc:	$T \times 0.4 = 0.2 \mathrm{d}^2 \theta / \mathrm{d}t^2$		M1		
	~	motion for particle:	$1 \cdot 5g - T = 1 \cdot 5 \times 0 \cdot 4 \mathrm{d}^2 \theta$		M1		
	Eliminate T	to find angular accel.:	$1 \cdot 5g = (0 \cdot 6 + 0 \cdot 5) d^2 d^2$		M1		
	CD M1	$1 + 5 = 1.5 = 1.0.4 + 0.2 + 1^2 + 0.1 + 2$	$\mathrm{d}^2\theta/\mathrm{d}t^2 = 15g/11 \text{ or } 13$	o [rad s ²]	A1		
	5.K. : IVI1 of $[d^2 \rho/dz^2 - 2]$	hly for $1.5g \times 0.4 = 0.2 d^2 \theta / dt^2$ $10, (d\theta/dt)^2 = 10\pi, v = 2.24$				Л	
	$\left[\left[u \right] \partial u \right] = 3$	$v_{1}(u_{0}(u_{1})) = 10n, v - 2.24$				4	
(ii)	EITHER						
		find $(d\theta/dt)^2$:	$\frac{1}{2} \left(\frac{\mathrm{d}\theta}{\mathrm{d}t} \right)^2 = (15g/11)\theta$		M1		
	Apply initia	l conds. and $\theta = \pi/6$:	$\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = 5\pi g/11 \text{ or } 14$.3	A1		
	OR Use energy	to find $(d\theta/dt)^2$:	$\frac{1}{2} 0.2 (d\theta/dt)^2 + \frac{1}{2} 1.5 (d\theta/dt)^2$	0.1 20/202			
	Use energy	$\omega \min(u \sigma / u)$.	$= 1.5g \times 0.4 \times \pi/6$	$0.4 \mathrm{d} \sigma / \mathrm{d} l$	(M1)		
	Simplify:		$(d\theta/dt)^2 = 5\pi g/11 \text{ or } 14$.3	(M1) (A1)		
	Find speed	of particle:	$v = 0.4 d\theta/dt = 51 [m s^{-1}]$		(A1) B1	3	[7]
	1	*	L				1.1
3	•••	to find speed v when AP vertical:	$\frac{1}{2}mv^2 = mga [v^2 = 2ga]$		B1		
	Use energy	to find speed w when AP at angle θ :	$\frac{1}{2}mw^2 = \frac{1}{2}mv^2$	0	N (1 A 1		
	(note 11-1	need not he formal	-mg(a-x)(1 - mg(a-x))		M1 A1		
		need not be found) radially to find tension <i>T</i> :	$[mw^{2} = 2mg\{x + (a - x) T - mg\cos\theta = mw^{2}/(a - x)$		M1 A1		
	Substitute for $F = Md$		$T = mg\{3\cos\theta + 2x/(a - T) = mg\{3\cos\theta + 2x/(a - T)\}$		MI A1	7	
		$T = 0$ when $\theta = \pi$:	2x = 3(a-x), x/a = 3/5		M1 A1	2	[9]
						_	[2]
1	-	eds parallel to barrier:	$v\cos\theta = u\cos 60^\circ [= u/$		B1		
		eds perpendicular to barrier:	$v\sin\theta = \frac{1}{3} u\sin 60^{\circ} [= i$	$u/2\sqrt{3}$]	M1		
	Find v^2		$v^2 = u^2 (1/12 + 1/4) = \frac{1}{3}$		A1	~	
	Relate loss	of K.E. to that before collision:	$\frac{1}{2} 2m(u^2 - v^2) = \frac{2}{3} \times \frac{1}{22}$	<i>2mu</i> ⁻ A. G	r. MI BI	5	
(i)	Find (revers	sed) speed of <i>P</i> using impulse:	$2mw_P = \frac{2}{3}mu(1 + \sqrt{3}) - 2$	2mv			
. /			$w_P = \frac{1}{3} u$. M1 A1	2	
200							
(ii)		sed) speed of Q using impulse:	$mw_Q = \frac{2}{3}mu(1 + \sqrt{3}) - mu(1 + \sqrt{3})$				
	OK by cons	ervation of momentum:	$2mu/3 - mw_Q = -2mu/\sqrt{2mu/3}$		M1 A 1		
	Find coeffic	eient of restitution:	$w_Q = (2/\sqrt{3} - 1/3) u$ (A. $(w_P + w_O) / (v + u)$.с.г.)	M1 A1		

	Page 5	Mark Sche	eme Syllab	u. · A	er	
		GCE AS/A LEVEL – Octol	ber/November 2012 9231	20	c	
Question Number	Mark Schen	ne Details		MI A1	annb	ido
;	Find (or ver	rify) AP by equating equilibrium ter	nsions:			.e.
			8mg(AP-2a)/2a	M1 A1		
			= 16mg (6a - AP)/4a $AP = 32a/8 = 4a$	A1 A.G A1	3	
(i)		ton's law at general point, e.g.: each incorrect term)	$m d^{2}x/dt^{2} = 8mg (2a - x)/2a - 16mg (2a + x)/4a$			
		Or	$m d^{2}y/dt^{2} = -8mg (2a + y)/2a + 16mg (2a - y)/4a$	M1 A2		
	· ·	give standard SHM eqn, e.g.:	$\mathrm{d}^2 x/\mathrm{d}t^2 = -8gx/a$	A1		
		1 if no derivation (max 3/6) T using SHM with $\omega = \sqrt{(8g/a)}$:	$T = 2\pi/\sqrt{(8g/a)} = \pi\sqrt{(a/2g)} \qquad A$.G M1 A1	6	
(ii)	Find max sp	beed using ωA with $A = a$:	$v_{max} = \sqrt{(8g/a) \times a}$ = $\sqrt{(8ag) \text{ or } 2\sqrt{(2ag)}}$	M1 A1	2	[11]
6 (i)	Find prob. t	hat first snow falls on 20 th :	$(1 - 0.2)^{19} \times 0.2 = 0.00288$	M1 A1	2	
(ii)	Find prob. t	hat first snow falls before 5 th :	$1 - (1 - 0.2)^4 = 0.59[0]$	M1 A1	2	
(iii)		condition for day <i>n</i> of month: any base) to give bound for <i>n</i> :	$1 - (1 - 0.2)^n \ge 0.95, \ 0.8^n \le 0.05$ n > log 0.05/log 0.8 n > 13.4, n _{min} = 14	M1 M1 A1	3	[7]
,	• ·	(x) to find $F(x)$ for $1 \le x \le 4$: fn. $G(y)$ of Y to X for $1 \le x \le 4$:	$F(x) = x^{2}/15 + c = (x^{2} - 1)/15$ $G(y) = P(Y < y) = P(X^{3} < y)$ $= P(X < y^{1/3}) = F(y^{1/3})$ $= (y^{2/3} - 1)/15$	M1 A1		
			$=(y^{2/3}-1)/15$ A	G M1 A1	4	
(i)	Find relation Evaluate <i>m</i> :	n for median <i>m</i> of <i>Y</i> :	$G(m) = \frac{1}{2}, m^{2/3} = \frac{17}{2}$ m = 24.8	M1 A1 A1	3	
(ii)	EITHER Find $g(y)$ ar	nd formulate $E(Y)$:	$g(y) = 2y^{-1/3}/45$ E(Y) = $\int yg(y)dy = \int 2y^{2/3}/45 dy$	M1 A1		
	OR Formulate E	E(Y) in terms of X:	$E(Y) = E(X^3) = \int 2x^4/15 dx$	(M1 A1)		
	Integrate an	d apply limits:	$E(Y) = \begin{bmatrix} \frac{2y5}{3} \\ \frac{75}{75} \end{bmatrix}_{1}^{64} or \begin{bmatrix} 2x5 \\ 75 \end{bmatrix}_{1}^{4}$ $= 2(1024 - 1)/75$ $= 682/25 \text{ or } 27.3$	M1 A1	4	[11]

		Page 6	Mark Schem	ne Syllabu	0	er	
		y	GCE AS/A LEVEL – Octobe	r/November 2012 9231	- 72.4 ² /8) M1		
						Ca,	
	(i)	Calculate gra	dient b in $y - \overline{y} = b(x - \overline{x})$:			.76	
				$b = (761 \cdot 3 - 72 \cdot 4 \times 78/8)/(769 \cdot 9 - 72 \cdot 4 \times 78/8)$	- 72·4²/8) M1		90
				= 55.4/114.68	111		.0
				[or 6.925/14.335]			
				= 1385/2867 or 0.483[1]	A1		
		Find regressi	on line:	y - 9.75 = 0.483 (x - 9.05)			
				$Or \ y = 5.38 + 0.483x$	M1 A1	4	
	(ii)	Find correlat	ion coefficient r:				
	()			$(8) / \sqrt{(769.9 - 72.4^2/8)(820 - 78^2/8)}$	8)} M1		
				$= 55.4 / \sqrt{(114.68 \times 59.5)}$			
				$[or \ 6.925 / \sqrt{(14.335 \times 7.4375)}]$	A1		
				= 0.671	*A1	3	
	(iii)	State both hy	notheses:	$H_0: \rho = 0, H_1: \rho > 0$	B1		
	()	•	correct tabular one-tail <i>r</i> value:	$r_{8,5\%} = 0.621$	*B1		
			l for reaching conclusion:	Reject H ₀ if $ r >$ tabular value	M1		
		Correct conc	lusion (AEF, dep *A1, *B1):	There is positive correlation	A1	4	[11]
)		Estimate non	ulation variance using A's sample:	$s_A^2 = (481 \cdot 1 - 57 \cdot 4^2/7) / 6$			
			biased here: $1.489 \text{ or } 1.22^2$)	$= 521/300 \text{ or } 1.737 \text{ or } 1.318^2$	M1 A1		
		Find confider		$57.4/7 \pm t \sqrt{(s_A^2/7)}$	M1		
		State or use c	correct tabular value of <i>t</i> :	$t_{6,0.975} = 2.447 [or 2.45]$	A1		
			correct to 3 s.f.:	$8.2 \pm 1.22 \text{ or } [6.98, 9.42]$	A1	5	
		State suitable	e assumptions (A.E.F.):	Population of <i>B</i> is Normal	D.I.		
		State homest		and has same variance as for A H : u = u $H : u > u$	B1 B1		
		State hypothe		H ₀ : $\mu_A = \mu_B$, H ₁ : $\mu_A > \mu_B$ $s_B^{\ 2} = (278.74 - 37^2/5) / 4$	B1		
			Siased here: $0.988 \text{ or } 0.994^2$)	$s_B = (2/8 \cdot /4 - 3//3)/4$ = 1.235 or 1.111 ²	B1		
			ulation variance for combined sample		<i>D</i> 1		
		I T	r I	$= 192/125 \text{ or } 1.536 \text{ or } 1.239^2$	M1 A1		
		Calculate val	ue of t (to 2 d.p.):	$t = (57 \cdot \frac{4}{7} - \frac{37}{5}) / s \sqrt{(1/7 + 1/5)}$	M1		
				= 0.8/0.726 = 1.10[2]	*A1		
		State or use o	correct tabular value	$t_{10,0.95} = 1.812 [or 1.81]$	*B1		
			lusion (AEF, dep *A1, *B1):	μ_{A} is not greater than μ_{B}	B1 B1		
			only A1 if intermediate result to 3 s.				
		S.R.: Invalid	method for calculating t (max 6/9):	$t = 0.8 / \sqrt{({s_A}^2 / 7 + {s_B}^2 / 5)}$	(M1)		
				= 0.8/0.704 = 1.14	(A1)	9	[14]

		Page 7	Mark S	cheme Sylla	abu. A	er	
			GCE AS/A LEVEL – Oc	ctober/November 2012 92	31 2	2	
0	(a)	Stating or in Stating or in	ntact pts with plane, sphere C b applying reactions R_P , R_S same a applying $F_P = F_S$ by moments ab applying 3 indep. eqns for F , R_P ,	s for B : pout O_A :	B1 B1 3 × M1 A1	ambi	idge.g
			lutions of forces, e.g. ↑ for syst ↑ for A: ↑ for C:				
		Moments ab	out <i>S</i> for <i>A</i> :	$F_P (r + r \cos \theta) + Wr \sin \theta$ = $R_P r \sin \theta$			
			and/or S: p to find bound for μ : P_S to find bound for μ :	$R_P = 3W/2$ $R_S = W/2$ $F = (W \sin \theta) / 2(1 + \cos \theta)$ $\mu \ge \sin \theta / 3(1 + \cos \theta)$ $\mu' \ge \sin \theta / (1 + \cos \theta)$	A1 A1 A1 A.G. M1 A1 A.G. M1	14	[14]
	(b)	Find E(X) us	sing $\int x f(x) dx$:	$E(X) = \int_{a}^{b} (5x^{2} - x^{3} - 4x)/10 d$ = $\frac{1}{2}(4^{3} - 2^{3}) - 3(4^{4} - 2^{4})/40 - 3(4^{4} - 2^{$	x M1 A1 $^{2}-2^{2})/5$ *A1		
		Verify E(X)	within 10% of 2.69 (A1 dep *)	A1): $(E(X) - 2.69)/2.69 = 0.041 < 0.$ or $1.1 \times 2.69 = 2.96 > E(X)$	-1 M1 A1		
		Show deriva	tion of tabular entry:	$\int_{3.2}^{3.6} (5x - x^2 - 4)/10 dx$ = 60[3(5x ² /2 - x ³ /3 - 4x)/10] 1 3 or [45x ² - 6x ³ - 72x] 1 3.2 ^T 3.6 = 122.4 - 83.328 - 28.8 or 60 × 0.1712 = 10.272	M1 5.2 13.6 A.G A1	5	
			st) null hypothesis: t 2 cells since exp. value < 5:	$H_0: f(x)$ fits data (A.E.F.) $O: \dots 8$ $E: \dots 14.208$	B1 B1	<i>L</i>	
		Calculate χ^2	(to 2 d.p.):	$\chi^2 = 0.8126 + 0.0584 + 0.2011$			
		[or if no cell	consistent tabular value (to 2 d. s combined: d for reaching conclusion:	+2.7135 = 3.78[4 .p.): $\chi_{3 0.9}^2 = 6.25[1]$ $\chi_{4, 0.9}^2 = 7.78]$ Accept H ₀ if χ^2 < tabular value	*B1		
		Conclusion ((A.E.F., dep *A1, *B1):	3.78 < 6.25 so f(x) does fit	A1	7	[14]