

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

FURTHER MATHEMATICS

9231/22

Paper 2 Further Pure Mathematics 2

October/November 2023

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

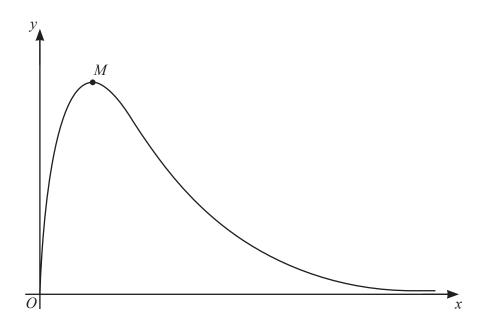
	•••••
	,

•	T.			.11
2	Ιt	10	given	that
4	ıι	13	ZIVCII	mai

$x = 1 + \frac{1}{t}$	and	$y = te^t$
$\lambda - 1 + \frac{1}{t}$	and	$y - i\epsilon$

(a)	Show that $\frac{dy}{dx} = -e^t(t^3 + t^2)$.	[3]
(b)	Find $\frac{d^2y}{dx^2}$ in terms of t .	[4]

	Use de Moivre's theorem to show that	
	$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$	[4
)	Hence obtain the roots of the equation	
•)		
	$32x^5 - 40x^3 + 10x - \sqrt{2} = 0$	
	in the form $cos(q\pi)$, where q is a rational number.	[4
	in the form $cos(q\pi)$, where q is a rational number.	[4
	in the form $\cos(q\pi)$, where q is a rational number.	


4 Find the solution of the differential equation

dу	1 2 11	_	ain	~
dr	+3y	_	sin	л

for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$.	[9]

5

The diagram shows part of the curve $y = x \operatorname{sech}^2 x$ and its maximum point M.

(a) Show that, at M,

$2x \tanh x - 1 = 0$

and verify that this equation has a root between 0.7 and 0.8.	[4]
	••••
	••••
	••••

$\sum_{n=0}^{\infty} r \sec x$	$ch^2r < n anh$	$n + \ln \operatorname{sech} n$	n – tanh 1 – 1	n sech 1.	
r=2					
 				•••••	
 	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
 				•••••	
 		•••••		•••••	
 	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	,
 		•••••		•••••	
 				•••••	
 ,		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	,

6	The	matrix	P	is	given	by

$$\mathbf{P} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}.$$

(a)	State the eigenvalues of P .	[1]
(b)	Use the characteristic equation of \mathbf{P} to find \mathbf{P}^{-1} .	[4]

The 3×3 matrix **A** has distinct non-zero eigenvalues $a, \frac{1}{2}, 2$ with corresponding eigenvectors

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix},$$

respectively.

Find A^{-1} in terms of a .	[5]

7	(a)	Starting from the definitions of cosh and sinh in terms of exponentials, prove that	
		$2\sinh^2 A = \cosh 2A - 1.$	[3]
	(b)	A curve has equation $y = x^2$, for $0 \le x \le \frac{2}{3}$. The area of the surface generated when the curve rotated through 2π radians about the x-axis is denoted by S.	/e is
		Use the substitution $x = \frac{1}{2} \sinh u$ to show that $S = \frac{1}{32} \pi \left(\frac{820}{81} - \ln 3 \right)$.	[9]
		32 (61)	
			•••••
			••••
			•••••
			•••••
			•••••
			••••
			•••••
			••••
			••••
			••••
			••••
			••••

•••••
•••••
•••••
•••••

8 It is given that $v = y^4$ and

$$y^{3} \frac{d^{2}y}{dx^{2}} + 3y^{2} \left(\frac{dy}{dx}\right)^{2} + y^{3} \frac{dy}{dx} + y^{4} = e^{-2x}.$$

(a) Show that

$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + \frac{\mathrm{d}v}{\mathrm{d}x} + 4v = 4\mathrm{e}^{-2x}.$	[4]

Find y in terms of x, given that, when $x = 0$, $y = 1$ and $\frac{dy}{dx} = -\frac{3}{8}$.

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.