Past Year: C4 Circular Measure

May/June 2002

7

The diagram shows the circular cross-section of a uniform cylindrical \log with centre O and radius 20 cm . The points A, X and B lie on the circumference of the cross-section and $A B=32 \mathrm{~cm}$.
(i) Show that angle $A O B=1.855$ radians, correct to 3 decimal places.
(ii) Find the area of the sector $A X B O$.

The section $A X B C D$, where $A B C D$ is a rectangle with $A D=18 \mathrm{~cm}$, is removed.

Nov/Dec 2002

3

In the diagram, $O P Q$ is a sector of a circle, centre O and radius $r \mathrm{~cm}$. Angle $Q O P=\theta$ radians. The tangent to the circle at Q meets $O P$ extended at R.
(i) Show that the area, $A \mathrm{~cm}^{2}$, of the shaded region is given by $A=\frac{1}{2} r^{2}(\tan \theta-\theta)$.
(ii) In the case where $\theta=0.8$ and $r=15$, evaluate the length of the perimeter of the shaded region.

May/June 03
9

The diagram shows a semicircle $A B C$ with centre O and radius 8 cm . Angle $A O B=\theta$ radians.
(i) In the case where $\theta=1$, calculate the area of the sector $B O C$.
(ii) Find the value of θ for which the perimeter of sector $A O B$ is one half of the perimeter of sector $B O C$.
(iii) In the case where $\theta=\frac{1}{3} \pi$, show that the exact length of the perimeter of triangle $A B C$ is $(24+8 \sqrt{ } 3) \mathrm{cm}$.

5

In the diagram, $O C D$ is an isosceles triangle with $O C=O D=10 \mathrm{~cm}$ and angle $C O D=0.8$ radians. The points A and B, on $O C$ and $O D$ respectively, are joined by an arc of a circle with centre O and radius 6 cm . Find
(i) the area of the shaded region,
(ii) the perimeter of the shaded region.

May/June 2005
8

In the diagram, $A B C$ is a semicircle, centre O and radius 9 cm . The line $B D$ is perpendicular to the diameter $A C$ and angle $A O B=2.4$ radians.
(i) Show that $B D=6.08 \mathrm{~cm}$, correct to 3 significant figures.
(ii) Find the perimeter of the shaded region.
(iii) Find the area of the shaded region.

May/June 2006

7

The diagram shows a circle with centre O and radius 8 cm . Points A and B lie on the circle. The tangents at A and B meet at the point T, and $A T=B T=15 \mathrm{~cm}$.
(i) Show that angle $A O B$ is 2.16 radians, correct to 3 significant figures.
(ii) Find the perimeter of the shaded region.
(iii) Find the area of the shaded region.

5

In the diagram, $O A B$ is a sector of a circle with centre O and radius 12 cm . The lines $A X$ and $B X$ are tangents to the circle at A and B respectively. Angle $A O B=\frac{1}{3} \pi$ radians.
(i) Find the exact length of $A X$, giving your answer in terms of $\sqrt{ } 3$.
(ii) Find the area of the shaded region, giving your answer in terms of π and $\sqrt{ } 3$.

May/June 2008

5

The diagram shows a circle with centre O and radius 5 cm . The point P lies on the circle, $P T$ is a tangent to the circle and $P T=12 \mathrm{~cm}$. The line $O T$ cuts the circle at the point Q.
(i) Find the perimeter of the shaded region.
(ii) Find the area of the shaded region.

May/June 2009
5

The diagram shows a circle with centre O. The circle is divided into two regions, R_{1} and R_{2}, by the radii $O A$ and $O B$, where angle $A O B=\theta$ radians. The perimeter of the region R_{1} is equal to the length of the major arc $A B$.
(i) Show that $\theta=\pi-1$.
(ii) Given that the area of region R_{1} is $30 \mathrm{~cm}^{2}$, find the area of region R_{2}, correct to 3 significant figures.

4

The diagram shows an equilateral triangle $O P Q$, of side 12 cm , and the point S such that $O S=P S=Q S$. The arc $P X Q$ has centre O and radius 12 cm . Find the perimeter of the shaded region, giving your answer in terms of π and $\sqrt{ } 3$.

Oct/Nov 2002

3

In the diagram, $O P Q$ is a sector of a circle, centre O and radius $r \mathrm{~cm}$. Angle $Q O P=\theta$ radians. The tangent to the circle at Q meets $O P$ extended at R.
(i) Show that the area, $A \mathrm{~cm}^{2}$, of the shaded region is given by $A=\frac{1}{2} r^{2}(\tan \theta-\theta)$.
(ii) In the case where $\theta=0.8$ and $r=15$, evaluate the length of the perimeter of the shaded region.

Oct/Nov 2003

6

The diagram shows the sector $O P Q$ of a circle with centre O and radius $r \mathrm{~cm}$. The angle $P O Q$ is θ radians and the perimeter of the sector is 20 cm .
(i) Show that $\theta=\frac{20}{r}-2$.
(ii) Hence express the area of the sector in terms of r.
(iii) In the case where $r=8$, find the length of the chord $P Q$.

3

In the diagram, $A C$ is an arc of a circle, centre O and radius 6 cm . The line $B C$ is perpendicular to $O C$ and $O A B$ is a straight line. Angle $A O C=\frac{1}{3} \pi$ radians. Find the area of the shaded region, giving your answer in terms of π and $\sqrt{ } 3$.

Oct/Nov 2005

2

In the diagram, $O A B$ and $O C D$ are radii of a circle, centre O and radius 16 cm . Angle $A O C=\alpha$ radians. $A C$ and $B D$ are arcs of circles, centre O and radii 10 cm and 16 cm respectively.
(i) In the case where $\alpha=0.8$, find the area of the shaded region.
(ii) Find the value of α for which the perimeter of the shaded region is 28.9 cm .

Oct/Nov 2006

3

In the diagram, $A O B$ is a sector of a circle with centre O and radius 12 cm . The point A lies on the side $C D$ of the rectangle $O C D B$. Angle $A O B=\frac{1}{3} \pi$ radians. Express the area of the shaded region in the form $a(\sqrt{ } 3)-b \pi$, stating the values of the integers a and b.

7

In the diagram, $A B$ is an arc of a circle, centre O and radius $r \mathrm{~cm}$, and angle $A O B=\theta$ radians. The point X lies on $O B$ and $A X$ is perpendicular to $O B$.
(i) Show that the area, $A \mathrm{~cm}^{2}$, of the shaded region $A X B$ is given by

$$
\begin{equation*}
A=\frac{1}{2} r^{2}(\theta-\sin \theta \cos \theta) \tag{3}
\end{equation*}
$$

(ii) In the case where $r=12$ and $\theta=\frac{1}{6} \pi$, find the perimeter of the shaded region $A X B$, leaving your answer in terms of $\sqrt{ } 3$ and π.

Oct/Nov 2008

6

In the diagram, the circle has centre O and radius 5 cm . The points P and Q lie on the circle, and the arc length $P Q$ is 9 cm . The tangents to the circle at P and Q meet at the point T. Calculate
(i) angle $P O Q$ in radians,
(ii) the length of $P T$,
(iii) the area of the shaded region.

5

The diagram shows a semicircle $A B C$ with centre O and radius 6 cm . The point B is such that angle $B O A$ is 90° and $B D$ is an arc of a circle with centre A. Find
(i) the length of the $\operatorname{arc} B D$,
(ii) the area of the shaded region.

Oct/Nov 2009/12
7

A piece of wire of length 50 cm is bent to form the perimeter of a sector $P O Q$ of a circle. The radius of the circle is $r \mathrm{~cm}$ and the angle $P O Q$ is θ radians (see diagram).
(i) Express θ in terms of r and show that the area, $A \mathrm{~cm}^{2}$, of the sector is given by

$$
\begin{equation*}
A=25 r-r^{2} \tag{4}
\end{equation*}
$$

(ii) Given that r can vary, find the stationary value of A and determine its nature.

May/June 2010/11

May/June 2010/12
May/June 2010/13

The diagram shows a metal plate $A B C D E F$ which has been made by removing the two shaded regions from a circle of radius 10 cm and centre O. The parallel edges $A B$ and $E D$ are both of length 12 cm .
(i) Show that angle $D O E$ is 1.287 radians, correct to 4 significant figures.
(ii) Find the perimeter of the metal plate.
(iii) Find the area of the metal plate.

Oct/Nov 2010/11

9

The diagram shows two circles, C_{1} and C_{2}, touching at the point T. Circle C_{1} has centre P and radius 8 cm ; circle C_{2} has centre Q and radius 2 cm . Points R and S lie on C_{1} and C_{2} respectively, and $R S$ is a tangent to both circles.
(i) Show that $R S=8 \mathrm{~cm}$.
(ii) Find angle $R P Q$ in radians correct to 4 significant figures.
(iii) Find the area of the shaded region.

Oct/Nov 2010/12

4

The diagram shows points A, C, B, P on the circumference of a circle with centre O and radius 3 cm . Angle $A O C=$ angle $B O C=2.3$ radians.
(i) Find angle $A O B$ in radians, correct to 4 significant figures.
(ii) Find the area of the shaded region $A C B P$, correct to 3 significant figures.

Oct/Nov 2010/13

8

The diagram shows a rhombus $A B C D$. Points P and Q lie on the diagonal $A C$ such that $B P D$ is an arc of a circle with centre C and $B Q D$ is an arc of a circle with centre A. Each side of the rhombus has length 5 cm and angle $B A D=1.2$ radians.
(i) Find the area of the shaded region $B P D Q$.
(ii) Find the length of $P Q$.

