MARK SCHEME for the October/November 2014 series

8780 PHYSICAL SCIENCE

8780/03
Paper 3 (Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2014	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

1 (a) sodium metal: + charges in all circles
sodium chloride: alternate + and - charges in circles
(b) (i) attraction between positive ions/lattice and delocalised electrons
(ii) electrostatic attractions between ions or attractions between oppositely charged ions [1]
(c) (i) delocalised electrons flow though the metal in both phases
(ii) ions can move in molten phase
ions cannot move in solid phase
[Total: 7]

2 (a) (i) $1 / 2 \mathrm{mv}^{2}=0.5 \times 3 \times 10^{5} \times 200^{2}\left(=6 \times 10^{9}\right)$
$\mathrm{mgh}=3 \times 10^{5} \times 10 \times 8000\left(=2.4 \times 10^{10}\right)$
total energy loss $=$ sum of E_{k} and $E_{\mathrm{p}}=3 \times 10^{10}(\mathrm{~J})$
one or two significant figures only (awarded if one clear answer to KE/PE)
(ii) use of total energy/time
$=3 \times 10^{10} /(30 \times 60)=1.7 \times 10^{7}(\mathrm{~W})$
(b) (i) use of force \times distance $=E_{\mathrm{k}}$ lost or other valid approach
distance $=1 / 2 \times 3 \times 10^{5} \times(250 / 3.6)^{2} / 4 \times 10^{5}$
1800 (m)
(ii) safety margin or wet runway or different loading or other valid reason why runway needs to be significantly longer than calculated in (b)(i)
[Total: 10]

3 (a) Avogadro's number of molecules
(b) (i) moles of $\mathrm{O}_{2}=\frac{0.350}{32}=\left(1.09 \times 10^{-2} \mathrm{~mol}\right)$
total moles of gas $=29 \times 1.09 \times 10^{-2}=0.317(\mathrm{~mol})$
accept 0.316
(ii) (number of moles of nitroglycerine) $=4 \times 1.09 \times 10^{-2}=0.0436$ (mol)
(mass nitroglycerine) $=227 \times 0.0436=9.9(\mathrm{~g})$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2014	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

(c) (i) $\mathrm{pV}=\mathrm{nRT}$
(ii) $\mathrm{p}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{0.873 \times 8.31 \times 1100}{1.00 \times 10^{-3}}$
7.98×10^{6} or 7980 or 7.98
units $=\mathrm{Pa}$ or kPa or MPa (as appropriate)
[Total: 9]

4 (a) (i) air molecules collide with (and rebound from mercury) surface causing change in momentum (of molecules)
change of momentum requires a force or rate of change of momentum equals force
sum of forces over surface leads to pressure
(ii) more molecules per unit volume/molecules closer together
thus more collisions per unit time
(b) use of $p=h \rho g\left(=(395-280) \times 10^{-3} \times 13.6 \times 1000 \times 9.81\right)$
$1.53 \times 10^{4}(\mathrm{~Pa})$
[Total: 7]

5 (a) for (significant) diffraction to occur/similar slit width to wavelength
so light spreads and goes through both double slits or spreads so that wavefronts through both double slits overlap
(b) (i) fringes would be further apart
(ii) fringes would be dimmer accept no change of separation or sharper do not accept different separation
(c) (i) single wavelength or frequency one colour is insufficient
(ii) coloured fringes/no interference pattern/central white fringe many wavelengths, therefore maxima all at different places

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2014	8780	03

6 (a) rate of the forward reaction = rate of the backward reaction $\left(R_{\mathrm{f}}=R_{\mathrm{b}}\right)$
(all) concentrations remain constant
(b) (i) appearance: \mathbf{A} goes darker and \mathbf{B} goes lighter explanation: (is exothermic) so as temperature increases, equilibrium moves to left or as temperature decreases, equilibrium moves to right in order to oppose the increase/decrease in temperature
(ii) explanation: both R_{f} and R_{b} increase when heated or decrease when cooled more molecules/less molecules will have $E \geq E_{\mathrm{a}}$ so more/less collisions will be successful
although question refers to \boldsymbol{A} taking less time than \boldsymbol{B}, candidates may argue why \boldsymbol{A} is faster or why \boldsymbol{B} is slower - allow either approach
(c) (i) $(\Delta H=) 9.16-2 \times 33.18=-57.2$
minus sign required
(ii) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
state symbols required
(iii) $2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{MgO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
correct products
correctly balanced
allow multiples and fractions
[Total: 12]

7 (a) use of $R=V / I=5000 / 2.4 \times 10^{-5}$
$2.1 \times 10^{8} \Omega$
(b) (i) $P=I^{2} R=\left(2.4 \times 10^{-5}\right)^{2} \times 5 \times 10^{6}=2.9 \times 10^{-3}(\mathrm{~W})$
(ii) $P=I V=5000 \times 2.4 \times 10^{-5}=0.12(\mathrm{~W})$
$0.12-2.9 \times 10^{-3}=0.117(\mathrm{~W})$
accept answer $\approx 0.12(\mathrm{~W})$ as recognition that the power dissipated in the resistor is very small in comparison to that of the glass container
(c) (i) $Q=I t=2.4 \times 10^{-5}$

C or coulombs
(ii) use of $n=Q / e=\left(2.4 \times 10^{-5} / 1.6 \times 10^{-19}\right)=1.5 \times 10^{14}$ ecf from (c)(i)
(iii) $W=P / n=0.117 / 1.5 \times 10^{14}=7.8 \times 10^{-16}(\mathrm{~J})$ ecf from (c)(ii)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2014	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

8 (a) P into Q : oxidation
P into T : dehydration or elimination
(b)

\mathbf{C}	\mathbf{H}	\mathbf{O}
$\frac{55.81}{12}$	$\frac{6.98}{1}$	$\frac{37.21}{16}$
4.65	6.98	2.33
1.996	2.996	1

2
3
1
shows working to get ratio
molecular formula can be obtained from the structural formula $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right.$ from $\left.\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ award one mark for dividing by the A_{r} and a second mark for correctly manipulating the numbers to get the proportion 2:3:1
(c) (i) R: $\mathrm{CH}_{3} \mathrm{COCOCO}_{2} \mathrm{H}$

S: $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{T}: \mathrm{CH}_{2}=\mathrm{CHCOCH} \mathrm{OH}_{2} \mathrm{OH}$
allow any unambiguous formula
(ii)

structure must show all bonds
(d) (i) Fehling's or Tollens' accept Na metal
red precipitate or silver mirror with \mathbf{Q} bubbles with \mathbf{P}
no response with \mathbf{P}, no response with \mathbf{Q}
not acidified dichromate or 2,4-DNPH or iodoform test
(ii) aldehyde, alcohol as appropriate

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2014	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

9 (a) (i) sum of the emfs around any closed loop in a circuit is equal to the sum of potential difference (owtte)
(ii) going round a complete loop there must be same amount of work done (per unit charge) as energy given (per unit charge) (owtte)
(b) (i) $I_{1}=I_{3}-I_{2}$
(ii) $E_{2}=4 I_{3} R$
(iii) $E_{1}=5 I_{1} R+4 I_{3} R$
(iv) recognition that $I_{1}=I_{3}$, and hence $E_{1}=9 I_{1} R$
substitution to show E_{2} : $E_{1}=4: 9$

