Cambridge International Advanced Subsidiary Level

MARK SCHEME for the October/November 2014 series

8780 PHYSICAL SCIENCE

8780/03

Paper 3 (Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

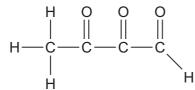
Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark Scheme	Syllabus	Paper 03		
			Cambridge International AS Level – October/November 2014 8780				
1	(a)		lium <u>metal</u> : + charges in all circles lium <u>chloride</u> : alternate + and – charges in circles		[1] [1]		
	(b)	(i)	attraction between positive ions/lattice and delocalised electrons		[1]		
		(ii)	electrostatic attractions between ions or attractions between oppos	sitely charge	ed ions [1]		
	(c)	(i)	delocalised electrons flow though the metal in both phases		[1]		
		(ii)	ions can move in molten phase ions cannot move in solid phase		[1] [1]		
					[Total: 7]		
2	(a)	(i)	$\frac{1}{2}$ mv ² = $0.5 \times 3 \times 10^5 \times 200^2$ (= 6×10^9) mgh = $3 \times 10^5 \times 10 \times 8000$ (= 2.4×10^{10}) total energy loss = sum of E_k and $E_p = 3 \times 10^{10}$ (J) one or two significant figures only (awarded if one clear answer to b	KE/PE)	[1] [1] [1] [1]		
		(ii)	use of total energy/time = $3 \times 10^{10}/(30 \times 60) = 1.7 \times 10^7$ (W)		[1] [1]		
	(b)	(i)	<u>use of</u> force × distance = E_k lost or other valid approach distance = $\frac{1}{2} \times 3 \times 10^5 \times (250/3.6)^2/4 \times 10^5$ 1800 (m)		[1] [1] [1]		
		(ii)	safety margin or wet runway or different loading or other valid reas needs to be significantly longer than calculated in (b)(i)	son why run	way [1]		
					[Total: 10]		
3	(a)	Avo	ogadro's number of molecules		[1]		
	(b)	(i)	moles of $O_2 = \frac{0.350}{32} = (1.09 \times 10^{-2} \text{ mol})$		[1]		
			total moles of gas = 29 × 1.09 × 10 ⁻² = 0.317 (mol) accept 0.316		[1]		
		(ii)	(number of moles of nitroglycerine) = $4 \times 1.09 \times 10^{-2}$ = 0.0436 (mol (mass nitroglycerine) = 227×0.0436 = 9.9 (g))	[1] [1]		


Page 3		3	Mark Scheme	Syllabus	Paper
			Cambridge International AS Level – October/November 2014	8780	03
	(c)	(i)	pV = nRT		[1]
		(ii)	$p = \frac{nRT}{V} = \frac{0.873 \times 8.31 \times 1100}{1.00 \times 10^{-3}}$		[1]
			7.98 × 10 ⁶ or 7980 or 7.98 units = Pa or kPa or MPa (as appropriate)		[1] [1]
					[Total: 9]
4	(a)	(i)	air molecules collide with (and rebound from mercury) surface caus momentum (of molecules) change of momentum requires a force or rate of change of momen sum of forces over surface leads to pressure		[1]
		(ii)	more molecules <u>per unit volume</u> /molecules closer together thus more collisions <u>per unit time</u>		[1] [1]
	(b)		$p = h \rho g$ (= (395 – 280) × 10 ⁻³ × 13.6 × 1000 × 9.81) 3 × 10 ⁴ (Pa)		[1] [1]
					[Total: 7]
5	(a)	so	(significant) diffraction to occur/similar slit width to wavelength light spreads and goes through both double slits or spreads so that v h double slits overlap	wavefronts t	[1] hrough [1]
	(b)	(i)	fringes would be further apart		[1]
		(ii)	fringes would be dimmer accept no change of separation or sharper do not accept different separation		[1]
	(c)	(i)	single wavelength or frequency one colour is insufficient		[1]
		(ii)	coloured fringes/no interference pattern/central white fringe many wavelengths, therefore maxima all at different places		[1] [1]
					[Total: 7]

Page 4	1	Mark Scheme	Syllabus	Paper
		Cambridge International AS Level – October/November 2014	8780	03
6 (a)		e of the forward reaction = rate of the backward reaction ($R_{\rm f} = R_{\rm b}$) concentrations remain constant		[1] [1]
(b)	(i)	<u>appearance</u> : A goes darker <u>and</u> B goes lighter <u>explanation</u> : (is exothermic) so as temperature increases, equilibrius or as temperature decreases, equilibrium moves to right in order to oppose the increase/decrease in temperature	um moves to	[1] o left [1] [1]
	(ii)	<u>explanation</u> : both R_f and R_b increase when heated or decrease when more molecules/less molecules will have $E \ge E_a$ so more/less collisions will be successful	en cooled	[1] [1] [1]
		ough question refers to A taking less time than B , candidates may a why B is slower – allow either approach	argue why A	is faster
(c)	(i)	$(\Delta H =) 9.16 - 2 \times 33.18 = -57.2$ minus sign required		[1]
	(ii)	$\frac{1}{2}N_2(g) + O_2(g) \rightarrow NO_2(g)$ state symbols required		[1]
((iii)	$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$ correct products correctly balanced		[1]
		allow multiples and fractions		[1]
				[Total: 12]
7 (a)		$\frac{1}{2} \frac{\text{of}}{10^8} R = V/I = 5000/2.4 \times 10^{-5} \times 10^8 \Omega$		[1] [1]
(b)	(i)	$P = I^2 R = (2.4 \times 10^{-5})^2 \times 5 \times 10^6 = 2.9 \times 10^{-3} (W)$		[1]
	(ii)	$P = IV = 5000 \times 2.4 \times 10^{-5} = 0.12 (W)$ $0.12 - 2.9 \times 10^{-3} = 0.117 (W)$ accept answer $\approx 0.12 (W)$ as recognition that the power dissipated is very small in comparison to that of the glass container	l in the resis	[1] [1] tor
(c)	(i)	$Q = It = 2.4 \times 10^{-5}$ C or coulombs		[1] [1]
	(ii)	<u>use of</u> $n = Q/e = (2.4 \times 10^{-5} / 1.6 \times 10^{-19}) = 1.5 \times 10^{14}$ ecf from (c)((i)	[1]
((iii)	$W = P/n = 0.117/1.5 \times 10^{14} = 7.8 \times 10^{-16}$ (J) ecf from (c)(ii)		[1]
	2			[Total: 9]

Page 5		Mark Scheme					Paper
		Cambridge	e International AS L	evel – October/I	November 2014	8780	03
8	• •	? into Q: oxida ? into T: dehyc	tion Iration or elimination				[1] [1]
	(b)	C 55.81 12	<mark>Н</mark> <u>6.98</u> 1	0 <u>37.21</u> <u>16</u>			[1]
		4.65 1.996	6.98 2.996	2.33 1			
		2	3	1	shows working to	o get ratio	[1]

molecular formula can be obtained from the structural formula (C_2H_3O from $C_4H_6O_2$) award one mark for dividing by the A_r and a second mark for correctly manipulating the numbers to get the proportion 2:3:1

(c) (i)	R: $CH_3COCOCO_2H$ S: $CH_3CH(OH)CH(OH)CH_2OH$ T: $CH_2=CHCOCH_2OH$ allow any unambiguous formula	[1] [1] [1]
(ii)		[1]

structure must show all bonds

(d)	(i)	Fehling's or Tollens' accept Na metal red precipitate or silver mirror with Q bubbles with P no response with P , no response with Q	[1] [1] [1]
		not acidified dichromate or 2,4-DNPH or iodoform test	
	(ii)	aldehyde, alcohol as appropriate	[1]

[Total: 12]

Page 6		6	Mark Scheme	Syllabus	Paper
			Cambridge International AS Level – October/November 2014	8780	03
9	(a)	(i)	sum of the emfs around any closed loop in a circuit is equal to the s difference (owtte)	sum of pote	ntial [1]
		(ii)	going round a complete loop there must be same amount of work o as energy given (per unit charge) (owtte)	done (per ur	nit charge) [1]
	(b)	(i)	$I_1 = I_3 - I_2$		[1]
		(ii)	$E_2 = 4 I_3 R$		[1]
		(iii)	$E_1 = 5 I_1 R + 4 I_3 R$		[1]
		(iv)	recognition that $I_1 = I_{3}$ and hence $E_1 = 9 I_1 R$ substitution to show E_2 : $E_1 = 4:9$		[1] [1]
					[Total: 7]