MARK SCHEME for the October/November 2015 series

8780 PHYSICAL SCIENCE

8780/03

Paper 3 (Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Ρ	age 2	2	Mark Scheme	Syllabus	Paper
		(Cambridge International AS/A Level – October/November 2015	8780	03
1	(a)	pos	sitive background cloud with negative particles (electrons) embedded		[1]
	(b)	(i)	alpha (particles) incident on gold <u>thin</u> gold/foil/leaf/in a vacuum/detection system		[1] [1]
		(ii)	virtually all the alpha particles were not deflected/very small deflecti remainder deflected through large angles	on	[1] [1]
		(iii)	positive nucleus nucleus is very small (compared with the atom) nucleus contains virtually all the mass (of the atom)		[1] [1] [1]
					[Total: 8]
2	(a)	(i)	Na ₂ O + H ₂ O \rightarrow 2NaOH SO ₃ + H ₂ O \rightarrow H ₂ SO ₄		[1] [1]
		(ii)	nature changes from basic on the left to acidic on the right OR sodium oxide is basic and sulfur trioxide is acidic		[1]
		(iii)	in basic oxides, the difference in electronegativity between the elem is large OR	ient and ox	ygen
			higher than sodium i.e. explains electronegativity differences.	ow, suitur is	[1]
		(iv)	the ability of a substance to react with/to act as an acid and a base		[1]
	(b)	(i)	hydrogen bonding		[1]
		(ii)	Van der Waals'/dipole-dipole		[1]
		(iii)	hydrogen bonding is <u>much</u> stronger than Van der Waals'/dipole-dip OR	ole	
			much more energy is needed to separate molecules		[1]
					[Total: 8]

Ρ	age	3	Mark Scheme	Syllabus	Paper
			Cambridge International AS/A Level – October/November 2015	8780	03
3	(a)	(i	18.0 squares from graph (at 1.0 ms per square giving <i>T</i> = 18.0 ms) (frequency =) 55.6 (Hz)		[1] [1]
		(ii	intensity $\propto \text{amplitude}^2$		[1]
		(iii	use of (amplitude 1) ² leading to 1 : 9		[1]
	(b)	(i	destructive interference is quiet and constructive interference loud		[1]
			Either constructive is (exactly) in phase (with direct wave) OR destructive is (180°) out of phase (with direct wave)		[1]
			reference to extra distance reflected wave travels causing phase di	fference	[1]
		(ii	use of $v = f \lambda$ leading to $\lambda = 320/55.6$ = 5.76 (m) (5.76/4 =) 1.44 m		[1] [1] [1]
		(iii	the intensities/amplitude of the two waves are different or are not th	ne same/OV	VTTE [1]
					[Total: 11]
4	(a)	(r (r (r	NaC <i>l</i> = 800/58.5 =) 13.68 Na ₂ CO ₃ = ½ × 13.68 =) 6.84 or via nNaHCO ₃ = 13.68 nass = 6.84 × 106 =) 725(g)		[1] [1] [1]
	(b)	(i	(nHC l =) 25.7 × 10 ⁻³ × 0.175 = 4.50 × 10 ⁻³ (mol)		[1]
		(ii	(nNa ₂ CO ₃ =) $\frac{1}{2} \times 4.50 \times 10^{-3} = 2.25 \times 10^{-3}$ M_r (washing soda) = 0.643/2.25 × 10 ⁻³ = 286		[1] [1]
		(iii	$M_{\rm r}(x{\rm H}_2{\rm O}) = 286 - 106 = 180$ (x = 180/18 =) 10		[1] [1]
					[Total: 8]

Ρ	age [,]	4	Mark Scheme	Syllabus	Paper
			Cambridge International AS/A Level – October/November 2015	8780	03
5	(a)	(i)	<u>use of</u> $\Delta E_p = mg \Delta h$ (= 0.314 × 9.81 × 0.774) = 2.38 (J)		[1] [1]
		(ii)	(<i>E</i> _k =) 2.38(J) or equal to value in (a)(i)		[1]
	(b)	(i)	use of $E_{\rm k} = \frac{1}{2} m v^2$ leading to $v^2 = 2 \times 2.80 / 0.774$ $v = 2.69 ({\rm m s^{-1}})$		[1] [1]
		(ii)	<u>use of</u> mass of bullet × velocity of bullet = mass of [target + bullet] > $(0.024 \times v = 0.774 \times 2.69)$ v = 86.7 (m s ⁻¹)	< velocity	[1]
			v = 00.7 (m3)		ניז
		(iii)	E_k for bullet = $\frac{1}{2} \times 0.024 \times 86.7^2$ = 90.2 (J) E_k for bullet > E_k for target clear consistent conclusion using the term inelastic/not elastic		[1] [1] [1]
					Tatal: 401
					[lotal: 10]
6	(a)	(i)	the <u>triple</u> bond (between the nitrogen atoms) is (very) strong		[1]
		(ii)	$N_2 + O_2 \rightarrow 2NO$		[1]
	(b)	(i)	the minimum amount of energy required for a reaction to occur		[1]
		(ii)	correct profile showing a peak between reactants and products and E_a is clearly < ΔH		[1]
			the peak is correctly labelled as E_a /+132 and with an arrow going upwards from the reactants line.		[1]
			the enthalpy change enthalpy change is correctly labelled with ΔH arrow going down from the reactants line	or –226 with	n an [1]
		(iii)	correct catalysed profile line that starts at the reactants line, ends a line and tracks <u>below</u> the non-catalysed profile line and is labelled	it the product 'C'	cts [1]
	(c)	(i)	$E_{a}(cat)$ lies to the <u>left</u> of E_{a} and is on the <i>x</i> -axis		[1]
		(ii)	more/higher proportion of molecules will have $E \ge E_a$ (cat) more/a higher proportion of collisions will be successful		[1] [1]
					[Total: 10]

Pa	age	5	Mark Scheme Syllabus Pa	per
			Cambridge International AS/A Level – October/November 2015 8780 0	3
7	(a)	minimum four straight vertical lines and starting and finishing on both plates and roughly equally spaced and at right angles to plates arrows from positive to negative plates		
	(b)	(i)	no change	[1]
		(ii)	decreases	[1]
	(c)	(i)	<u>use of</u> $E = V/d$ (= 1560/8 × 10 ⁻³) = 1.95 × 10 ⁵ and V m ⁻¹ or N C ⁻¹	[1] [1]
		(ii)	9.03×10^{-13} (N)	[1]
		(iii)	<u>use of</u> $E = F/Q$ leading to $Q = 9.03 \times 10^{-13}/-1.95 \times 10^{5}$ = -4.63 × 10 ⁻¹⁸ (C)	[1] [1]
		(iv)	<u>use of</u> $n = Q/q = (-4.63 \times 10^{-18}/1.6 \times 10^{-19} = 28.9)$ round to whole number/28 or 29	[1] [1]
			[Tota	ıl: 11]
8	(a)	Bı st	ønsted-Lowry acid: proton donor ong acid: highly dissociated	[1] [1]
	(b)	(i)	a temperature of 350–500 °C/Kelvin equivalents use the catalyst V ₂ O ₅ /vanadium(V) oxide	[1] [1]
		(ii)	there are fewer moles of product than reactant in the equation (at high pressure) equilibrium moves right/increased yield to decrease the pressure/number of molecules	[1] [1] [1]
	(c)	(i)	$(CH_3)_2CHCO_2H + H_2O \rightleftharpoons H_3O^+ + (CH_3)_2CHCO_2^-$	[1]
		(ii)	potassium cyanide/KCN	[1]
		(iii)	2-methylpropan(e)nitrile	[1]
		(iv)	 not an acid argues that the –ve response with sodium carbonate means it can't be an acid ketone 	[1]
			 argues that +ve 2.4-DNPH and –ve Tollens' means it must be ketone <u>primary</u> alcohol 	[1]
			argues that as Q is oxidised to a carboxylic acid, it must be a primary alcohol	[1]
		(v)	clear (structural) formula for 1-hydroxybutan-2-one/4-hydroxybutan-2-one $CH_3CH_2COCH_2OH/CH_3COCH_2CH_2OH$	[1]
			[Tota	l: 14]