Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

PHYSICAL SCIENCE

Paper 4 Advanced Practical Skills

8780/04
October/November 2015
1 hour 30 minutes

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory, where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer both questions.
You will be allowed to work with the apparatus for a maximum of 45 minutes for each question.
Electronic calculators may be used.
You are advised to show all working in calculations.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 11 and 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use	
1	
2	
Total	

This document consists of $\mathbf{1 1}$ printed pages and 1 blank page.

1 When a marble is dropped into sand it makes a crater in the sand. In this experiment you will measure the diameter of the craters made when a marble is dropped from known heights into sand.
(a) Measure and record the diameter d of the marble.

$$
d=
$$

\qquad cm [1]
(b) The apparatus shown in Fig. 1.1 is set up for you. Do not alter or adjust this apparatus.

You are also given a 30 cm ruler, a set square and some additional sand to top up the tray if necessary. Use the 30 cm ruler to level the sand between each set of readings.

Fig. 1.1
(i) Hold the marble above the sand so that the bottom of the marble is approximately level with the 65 cm mark on the metre rule.

Record the height h_{1}, the distance from the bottom of the marble to the sand. Record all the measurements taken to show how you determined h_{1}.

$$
\begin{equation*}
h_{1}= \tag{1}
\end{equation*}
$$

(ii) Drop the marble into the sand. The sand will have a profile similar to that shown in Fig. 1.2.

Fig. 1.2
(iii) Measure and record the diameter x_{1} of the crater.

$$
x_{1}=
$$

(iv) Carefully remove the marble and use the 30 cm ruler to level the sand with the top edge of the tray.
(v) Drop the marble from the same height h_{1} twice more and find the average diameter of the crater $x_{\text {AV1 }}$ using all three readings. Record all your results and show your working.

$$
\begin{equation*}
x_{\mathrm{AV} 1}=. \tag{1}
\end{equation*}
$$

(vi) Subtract the diameter of the marble d from the average diameter of the crater $x_{\mathrm{AV} 1}$. This quantity is y_{1}, where $y_{1}=x_{\mathrm{AV} 1}-d$.

$$
y_{1}=
$$

(c) Repeat the steps in (b), dropping the marble from height h_{2}, where h_{2} is between 25 cm and 35 cm .

$$
\begin{aligned}
& h_{2}= \\
& x_{\mathrm{AV} 2}= \\
& y_{2}=
\end{aligned}
$$

(d) Describe the steps you took to ensure that your readings for h and x were as accurate as possible.
(i) height h
\qquad
\qquad
\qquad
\qquad
(ii) diameter of the crater x
\qquad
\qquad
\qquad
\qquad
(e) Table 1.1 shows the uncertainties in some of the quantities measured.

Table 1.1

	diameter of marble d / cm	height h / cm	diameter of crater x / cm	$y=(x-d) / \mathrm{cm}$
uncertainty	± 0.1		± 0.2	

(i) Estimate the uncertainty in measuring height h.

Record your estimate in Table 1.1.
(ii) Calculate the uncertainty in y.

Record your answer in Table 1.1.
(iii) Calculate the percentage uncertainty in y.
(f) It is suggested that $y^{2}=K h$, where K is a constant.

Use the uncertainties in Table 1.1 to show whether or not your results support this suggestion.
\qquad
\qquad
(g) Describe how you would verify that y^{2} is proportional to h.
\qquad
\qquad
\qquad

BLANK PAGE

2 You are to investigate the energy change when $2.00 \mathrm{moldm}^{-3}$ sodium hydroxide is reacted with dilute sulfuric acid. The experiment you will perform is known as a thermometric titration.
(a) Place a polystyrene cup into the $250 \mathrm{~cm}^{3}$ beaker to prevent it from falling over.
(i) Use the pipette and pipette filler to transfer $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution into the polystyrene cup. Stir the solution with the thermometer. Measure and record the temperature T of the solution.
T
${ }^{\circ} \mathrm{C}$
(ii) You will be adding portions of sulfuric acid to the sodium hydroxide solution.

Construct a table to record 12 sets of readings of the total volume of acid V_{T} added and the temperature T of the solution.

Record the information from (a)(i) in your table.
(iii) Fill the burette with dilute sulfuric acid.
(iv) Add about $4 \mathrm{~cm}^{3}$ of the acid to the sodium hydroxide solution. Stir thoroughly with the thermometer and measure the temperature.

Record in your table, to an appropriate level of precision, the total volume of acid added and the temperature.
(v) Add a further ten portions of sulfuric acid until a total of about $44 \mathrm{~cm}^{3}$ has been added.

Measure the temperature of the solution after each addition.
Record all the readings in your table to an appropriate level of precision.
(b) (i) Plot a graph of temperature T (y-axis) against the total volume of sulfuric acid added V_{T} (x-axis) on the grid provided.

Use the points you have plotted to draw two best-fit curves.
Draw a best-fit curve for the points as the temperature rises.
Draw a second best-fit curve for the points as the temperature falls.
Extend the curves until they cross each other. The point where the curves cross is the neutral point of the titration.
(ii) Use your graph to determine

1. the volume of sulfuric acid V_{N} needed to exactly neutralise $25.0 \mathrm{~cm}^{3}$ of the sodium hydroxide solution,

$$
V_{N}=. m^{3}[1]
$$

2. the temperature rise ΔT caused by the reaction.

$$
\Delta T=
$$

\qquad ${ }^{\circ} \mathrm{C}$ [1]
(iii) Use your answer to (b)(ii)1 to calculate the concentration of the sulfuric acid.

> concentration of sulfuric acid
\qquad $\mathrm{moldm}^{-3}[1]$
(c) The enthalpy change for the reaction shown below is known as the enthalpy change of neutralisation ΔH_{N}.

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

ΔH_{N} is the enthalpy change when one mole of hydroxide ions, OH^{-}, exactly neutralises one mole of H^{+}ions.

(i) Use the formula below to calculate the thermal energy change q for your thermometric titration.

$$
q=m c \Delta T
$$

Assume that the density of the reaction mixture is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$ and that its specific heat capacity c is $4.18 \mathrm{Jg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$.

$$
\begin{equation*}
q= \tag{2}
\end{equation*}
$$

(ii) Use your answers to (b)(iii) and (c)(i) to calculate a value for the energy change of neutralisation, ΔH_{N}.

$$
\Delta H_{\mathrm{N}}
$$

$$
. \mathrm{kJ} \mathrm{~mol}^{-1}[2]
$$

(d) (i) Suggest the main source of error in your thermometric titration experiment.
\qquad
\qquad
(ii) Suggest what effect the main source of error would have on ΔT.
\qquad
\qquad
\qquad
(iii) Suggest what effect the main source of error would have on ΔH_{N}.
\qquad
\qquad
\qquad

Qualitative Analysis Notes

Key: [ppt. = precipitate]
1 Reactions of aqueous cations

	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
$\begin{aligned} & \text { iron(II), } \\ & \mathrm{Fe}^{2+}(\mathrm{aq}) \end{aligned}$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { iron(III), } \\ & \mathrm{Fe}^{3+}(\mathrm{aq}) \end{aligned}$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
$\begin{aligned} & \text { iodide, } \\ & \mathrm{I}^{-}(\mathrm{aq}) \end{aligned}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil, NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ or with Pb^{2+} (insoluble in excess dilute strong acid)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated with dilute acids, gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns acidified aqueous potassium manganate(VII) from purple to colour- less

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

