Cambridge
International
AS Level

Cambridge International Examinations

PHYSICAL SCIENCE
Paper 2 Short Response
MARK SCHEME
Maximum Mark: 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	$\mathbf{8 7 8 0}$	$\mathbf{0 2}$

1 reading in Fig.1.1 $=0.39$ and Reading in Fig.1.1 $=2.84$
diameter $=$ reading $2-$ reading $1=2.45 \mathrm{~mm}$

2
(a) equation $1 \quad \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
equation $2 \quad \mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$

Answers in either order.
(b) clearly explains that in their acid/base equation, SiO_{2} is (a non-metal, so is an) acidic (oxide) and CaO is (a metal oxide, so is) basic

3 (a) gravitational force/weight
(b) (i) work $=$ force \times displacement in the direction of the force
(ii) force is always at right angles to the velocity (of the satellite) OWTTE
$4 \quad$ (a) $q=50.0 \times 4.2 \times 6.7=1407(J)$
(b) deduces limiting amount of acid to be 0.025 mol
$\Delta \mathrm{H}_{\text {neutralisation }}=-1407 / .025=(-) 56.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

5 force per unit charge
positive/stationary (charge)

6 (a) NaBr solution turns red/orange/brown/yellow and
NaF no change/stays colourless
(b) no reaction occurs with NaF
$\mathrm{F}_{2}>\mathrm{Cl}_{2}$ as an oxidising agent
OR
Br_{2} is formed from NaBr
$\mathrm{Cl}_{2}>\mathrm{Br}_{2}$ as an oxidising agent

7 (a) load $=(175 \times 9.81)-686=1030(N)$
(b) $686 \times y=1030 \times(6.0-y)$
(distance) $=3.6(\mathrm{~m})$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	$\mathbf{8 7 8 0}$	$\mathbf{0 2}$

8 (a) appropriate comparison, e.g. Mg with steam, and Ba reacts with (cold) water
(b) (i) $\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}$
(ii) $\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2}$

9 (a) attempt to show $P=F / A=m g / A$ OR $\rho=m / V=m / A h$
clear cancellation to $P=\rho h g$
(b) density changes with height/gravitational field changes with height

10 (a) K has greater shielding/an extra shell than Ar
(b) K^{+}has same electron arrangement as $\mathrm{Ar} /$ is isoelectronic/has same
shielding/has a full outer shell when an electron is removed
K^{+}has more protons than Ar , so smaller size/greater attraction from nucleus

11 resistance of parallel pair is less than resistance of single resistor
(therefore the) reading will reduce

