CAMBRIDGE INTERNATIONAL EXAMINATIONS

General Certificate of Education Advanced Subsidiary Level and Advanced Level

9702/2 **PHYSICS**

PAPER 2 AS Core

OCTOBER/NOVEMBER SESSION 2002

1 hour

Candidates answer on the question paper. No additional materials.

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. You may lose marks if you do not show your working or if you do not use appropriate units.

FOR EXAMINER'S USE	

 $g = 9.81 \text{ m s}^{-2}$

Data

acceleration of free fall,

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7}~{\rm Hm^{-1}}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant,	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

www.PapaCambridge.com

Formulae

uniformly accelerated motion,

$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

work done on/by a gas,

$$W = p\Delta V$$

gravitational potential,

$$\phi = -\frac{Gm}{r}$$

simple harmonic motion,

$$a = -\omega^2 x$$

velocity of particle in s.h.m.,

$$v = v_0 \cos \omega t$$

$$v = \pm \omega \sqrt{(x_0^2 - x^2)}$$

resistors in series,

$$R = R_1 + R_2 + \dots$$

resistors in parallel,

$$1/R = 1/R_1 + 1/R_2 + \dots$$

electric potential,

$$V = \frac{Q}{4\pi\epsilon_0 r}$$

capacitors in series,

$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel,

$$C = C_1 + C_2 + \dots$$

energy of charged capacitor,

$$W = \frac{1}{2}QV$$

alternating current/voltage,

$$X = X_0 \sin \omega t$$

hydrostatic pressure,

$$p = \rho gh$$

pressure of an ideal gas,

$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,

$$x = x_0 \exp(-\lambda t)$$

decay constant,

$$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$$

critical density of matter in the Universe,

$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

equation of continuity,

$$Av = constant$$

Bernoulli equation (simplified),

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

Stokes' law,

$$F = Ar\eta v$$

Reynolds' number,

$$R_{\rm e} = \frac{\rho vr}{n}$$

drag force in turbulent flow.

$$F = Br^2 \rho v^2$$

Answer **all** the questions in the spaces provided.

		4 Answer all the questions in the spaces provided.	For Examiner's Use
1	(a) (i)	Define <i>density</i> .	Bridge.co
			133
	(ii)	State the base units in which density is measured.	
		[2]	

(b) The speed v of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma p}{\rho}\right)}$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit. [3]

A student uses a metre rule to measure the length of an elastic band before and after 2 stretching it.

The lengths are recorded as

length of band before stretching, $L_0 = 50.0 \pm 0.1$ cm

length of band after stretching, $L_{\rm S}$ = 51.6 \pm 0.1 cm.

Determine

(a) the change in length $(L_S - L_0)$, quoting your answer with its uncertainty,

(b) the fractional change in length, $\frac{(L_{\rm S}-L_{\rm 0})}{L_{\rm 0}}$,

For Examiner's Use

fractional change =	:	[1]]
---------------------	---	-----	---

(c) the uncertainty in your answer in (b).

A ball falls from rest onto a flat horizontal surface. Fig. 3.1 shows the variation with 3 the velocity *v* of the ball as it approaches and rebounds from the surface.

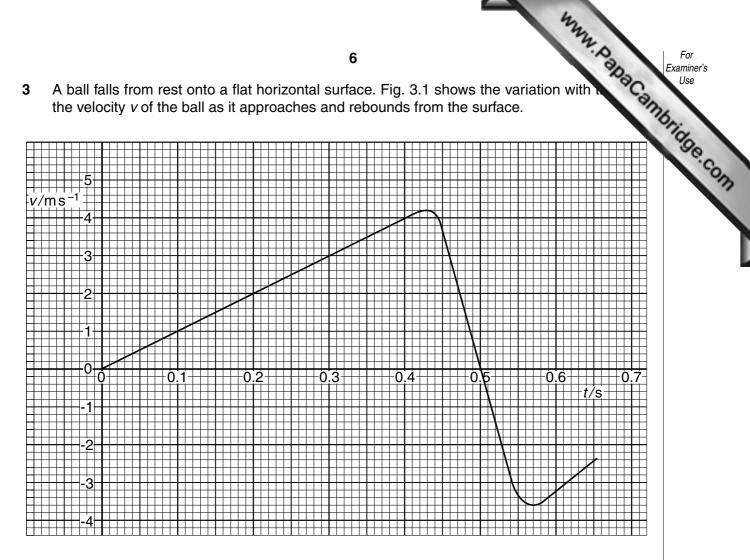


Fig. 3.1

Use data from Fig. 3.1 to determine

(a) the distance travelled by the ball during the first 0.40 s,

distance = m [2]

(b)	the change in momentum of the ball, of mass 45 g, during contact of the ball surface,	For Examiner's Use
	change = Ns	[4]
(c)		[ד]
	force = N	[2]
(a)	Explain what is meant by the concept of work.	
(I- \		
(b)	Using your answer to (a) , derive an expression for the increase in gravitational potent energy $\Delta E_{\rm p}$ when an object of mass m is raised vertically through a distance Δh not the Earth's surface.	
	The acceleration of free fall near the Earth's surface is g .	[2]

4

The variation with time t of the displacement x of a point in a transverse wave T_1 is S_1 5 Fig. 5.1.

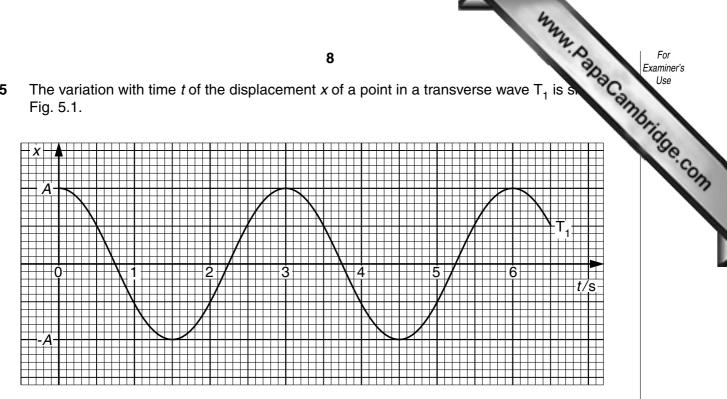


Fig. 5.1

(a)			rence to displacement and direction of travel of wave energy, explain what is y a transverse wave.
			[1]
(b)	lags		od transverse wave T_2 , of amplitude A has the same waveform as wave T_1 but hind T_1 by a phase angle of 60°. The two waves T_1 and T_2 pass through the bint.
	(i)		Fig. 5.1, draw the variation with time t of the displacement x of the point in [2]
	(ii)	Exp	plain what is meant by the <i>principle of superposition</i> of two waves.
			[2]
(iii) For the time $t = 1.0$ s, use Fig. 5.1 to determine, in terms of A ,		the time $t = 1.0$ s, use Fig. 5.1 to determine, in terms of A ,	
		1.	the displacement due to wave T ₁ alone,
			displacement =
		2.	the displacement due to wave T ₂ alone,
			displacement =
		3.	the resultant displacement due to both waves.
			displacement =

9 BLANK PAGE

Turn over for question 6

www.PapaCambridge.com

www.PapaCambridge.com 6 An electron travelling horizontally in a vacuum enters the region between two ho metal plates, as shown in Fig. 6.1.

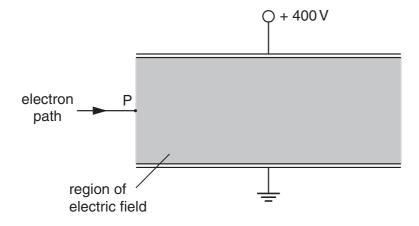


Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of + 400 V. The separation of the plates is 0.80 cm.

The electric field between the plates may be assumed to be uniform and outside the plates to be zero.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- **(b)** Determine the electric field strength *E* between the plates.

The state of the s	
· day	For Examiner's Use
WWW. PapaCan	36
	Tide
	.com

- (c) Calculate, for the electron between the plates, the magnitude of
 - (i) the force on the electron,

	(ii)	force =
		$acceleration = \dots m s^{-2}$ [4]
(d)		e and explain the effect, if any, of this electric field on the horizontal component of notion of the electron.
		[2]

7 A student set up the circuit shown in Fig. 7.1.

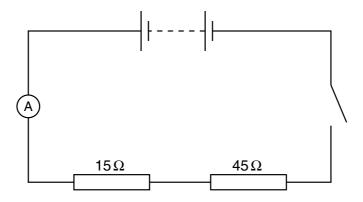


Fig. 7.1

The resistors are of resistance 15 Ω and 45 Ω . The battery is found to provide 1.6 \times 10⁵ J of electrical energy when a charge of 1.8 \times 10⁴ C passes through the ammeter in a time of 1.3 \times 10⁵ s.

- (a) Determine
 - (i) the electromotive force (e.m.f.) of the battery,

e.m.f. = V

(ii) the average current in the circuit.

current = A

[4]

www.PanaCambridge.com (b) During the time for which the charge is moving, $1.1 \times 10^5 \, \text{J}$ of energy is dissipated $45\,\Omega$ resistor.

		ϵ	energy =	J
	(ii)	Suggest why the total energy provided is resistors.	greater than that dissipated in the	two
				[4]
A n	ucleu	us of an atom of francium (Fr) contains 87 p	rotons and 133 neutrons.	
(a)	Wri	te down the notation for this nuclide.		
		Fr 		[2]
(b)		e nucleus decays by the emission of a atine (At).	n $lpha$ -particle to become a nucleus	s of
	Wri	te down a nuclear equation to represent this	s decay.	[2]

8

www.PapaCambridge.com An aluminium wire of length 1.8 m and area of cross-section 1.7×10^{-6} m² has one en 9 to a rigid support. A small weight hangs from the free end, as illustrated in Fig. 9.1.

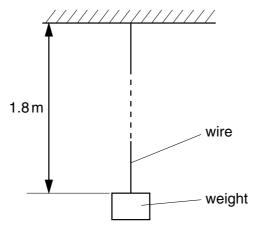


Fig. 9.1

The resistance of the wire is $0.030\,\Omega$ and the Young modulus of aluminium is $7.1\times10^{10}\,\mathrm{Pa}$.

The load on the wire is increased by 25 N.

- (a) Calculate
 - (i) the increase in stress,

(ii) the change in length of the wire.

change = m

www.PapaCambridge.com (b) Assuming that the area of cross-section of the wire does not change when the increased, determine the change in resistance of the wire.

change = Ω [3]

16

BLANK PAGE

www.PapaCambridge.com