CAMBRIDGE

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

Question Number	Key	Question Number	Key
1	B	21	B
2	B	22	D
3	B	23	B
4	A	24	D
5	C	25	C
6	B	26	B
7	C	27	C
8	C	28	C
9	D	29	B
10	D	30	C
11	B	31	A
12	A	32	B
13	D	33	B
14	B	34	B
15	A	35	C
16	C	36	D
17	C	37	B
18	D	38	C
19	B	39	B
20	A	40	D

CAMBRIDGE

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02
PHYSICS
Paper 2 (Structured Questions (AS))

Page 1	Mark Scheme	Sy $/$ Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9712

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C -mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Sy
	A/AS LEVEL EXAMINATIONS - JUNE 2003	$97 /$

1

$\mathrm{kg} \mathrm{m}^{-3}$

 frequency or count rate or activity or decay constantNC^{-1} or $\mathrm{V} \mathrm{m}^{-1}$ or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{C}^{-1}$ etc.B1momentum or impulse B1(Allow solidus notation and non SI units)
2 (a) (i) distance from a (fixed) point M1
in a specified direction A1
(Allow 1 mark for 'distance in a given direction')
(ii) (displacement from start is zero if) car at its starting position B1
(b) (i) $1 \quad v^{2}=u^{2}+2$ as
$28^{2}=2 \times$ a $\times 450$ (use of component of 450 scores no marks) C1
$\mathrm{a}=0.87 \mathrm{~m} \mathrm{~s}^{-2}$ A1
(-1 for 1 sig. fig. but once only in the question)
(i)2 $\quad v=u+$ at or any appropriate equation $28=0.87 t$ or appropriate substitution C1
$\mathrm{t}=32 \mathrm{~s}$ A1
(i)3 $E_{k}=1 / 2 m v^{2}$ C1
$=1 / 2 \times 800 \times 28^{2}$
$=3.14 \times 10^{5} \mathrm{~J}$. A1
(i)4 $E_{\mathrm{p}}=m g h$ C1
$=800 \times 9.8 \times 450 \sin 5$ C1
$=3.07 \times 10^{5} \mathrm{~J}$ A1
(ii) power = energy/time C1
$=\left(6.21 \times 10^{5}\right) / 32.2$ C1
$=1.93 \times 10^{4} \mathrm{~W}$ A1(power $=F v$ with $F=m g \sin \theta$ scores no marks)
(iii) some work also done against friction forces. M1
location of frictional forces identified A1
(allow reasonable alternatives)
3 (a) (i) ductile B1
(ii)1 L shown at end of straight line B1
(ii)2 reciprocal of gradient of straight line region B1
(b) (i)1 circumference $=3 \pi \mathrm{~cm}$ or arc $=r \theta$ C1
extension $=(6.5 / 360) \times 3 \pi$ $=1.5 \sin ($ or tan $) 6.5$. M1
$=0.17 \mathrm{~cm}$ A0
(i)2 strain $=$ extension/length C1

$$
=0.17 / 250
$$A1

(ii) stress = force/area C1
$=(6.0 \times 9.8) /\left(7.9 \times 10^{-7}\right)$ C1
$=7.44 \times 10^{7} \mathrm{~Pa}$ A1

$$
=6.8 \times 10^{-4} \text {. }
$$

Page 3

(iii) Young modulus $=$ stress $/$ strain

$$
\begin{aligned}
& =\left(7.44 \times 10^{7}\right) /\left(6.8 \times 10^{-4}\right) \\
& =1.1 \times 10^{11} \mathrm{~Pa} \ldots
\end{aligned}
$$

(iv) remove extra load and see if pointer returns to original position or wire returns to original length B1
4 (a) e.g. both transverse/longitudinal/same type meet at a point, same direction of polarisation, etc....... 1 each, max 3 B3
(allow 1 mark for any condition for observable interference)
(b) (i) 1 allow $0.3 \mathrm{~mm} \rightarrow 3 \mathrm{~mm}$. B1
(i)2 $\lambda=a x / D$ (allow any subject) B1
(ii)1 separation increased B1
less bright B1
(ii)2 separation increased B1
less bright B1
(ii)3 separation unchanged B1
fringes brighter B1
further detail, i.e quantitive aspect in (ii)1 or (ii)2 B1
(in (b), do not allow e.c.f. from (b)(i)2)
5 (a) (i) resistance $=V / I$ C1
A1$\begin{aligned} & =6.0 /\left(40 \times 10^{-3}\right) \\ & =150 \Omega \ldots \ldots \ldots \ldots \ldots \ldots \ldots\end{aligned}$$\begin{aligned} & =6.0 /\left(40 \times 10^{-3}\right) \\ & =150 \Omega \ldots \ldots \ldots \ldots \ldots \ldots \ldots\end{aligned}$
(no marks for use of gradient)
(ii) at 8.0 V , resistance $=8.0 /\left(50 \times 10^{-3}\right)=160 \Omega$. C1
change $=10 \Omega$ A1
(b) (i) straight line through origin M1
passes through $I=40 \mathrm{~mA}, \mathrm{~V}=8.0 \mathrm{~V}$ A1
(ii) current in both must be 40 mA C1
e.m.f. $=8.0+6.0=14.0 \mathrm{~V}$ A1
6 (a) (i) curve is not smooth, fluctuations, etc B1
(ii) curve is same shape or same half-life, not affected by temperature, etc B1
1

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9702/03

PHYSICS
Paper 3 (Practical (AS))

Accept $\Delta \theta$ to $\pm 1^{\circ} \pm 2^{\circ}$
Ratio and percentage ideas correct

Expect to see at least 6 sets of results
Less than 6 sets does not score this mark
Check a value of T^{4}. Underline checked value and tick if correct (1 mark)
Ignore small rounding errors. This mark cannot be awarded if there are no raw times, number of oscillations measured in a fixed time, or the stopwatch has been misread. If there is no record of the number of oscillations then this mark cannot be scored
It may be necessary to refer to page 3 of script for a value of n
Check a value for $\cos \theta$. Underline checked value and tick if correct
(1 mark)
Ignore small rounding errors. Expect to see a correct sign
If either incorrect, write in correct value and -1 eeoo
Minor help given by Supervisor, -1. Major help, then -2
(d) (i) Repeated readings

For each value of θ there must be at least two values of t
An average value does not have to be calculate
(d) (i) At least 10° between the readings of θ
(d) (i) Quality of results

Judge by scatter of points about Examiner line of best fit
6 reasonable trend plots with little scatter (2 marks)
5 trend plots, or some scatter of plots
(1 mark)
Large scatter/no trend/wrong quantities plotted
(d) (i) Column headings

Check the $1 / T^{4}$ column heading only
Quantity and unit (s^{-4}) must be correct
(d) (i) Consistency

Apply to raw values of θ and t only (one mark each)
Values of θ must all be given to the nearest degree. Do not allow tenths of a degree
Values of t must all be given to the nearest 0.1 s or 0.01 s
Do not apply to average values
(d) (ii) Justification of number of of in $\cos \theta$

Answer must relate sf in θ to sf in $\cos \theta$
Do not allow answers in terms of decimal places
Do not allow vague answers that are given in terms of 'raw data'
(e) (i) Axes

Scales must be such that the plotted points occupy at least half the graph grid in both the x and y directions (i.e. 4×6 in portrait or 6×4 in landscape)
Axes must be labelled with the quantity plotted. Ignore units. Do not allow awkward scales or gaps of more than three large squares between the scale markings
(e) (i) Plotting of points

Check a suspect plot. Circle and tick if correct. If incorrect, show correct position with arrow, and -1 . Work to half a small square. All observations must be plotted
(e) (i) Line of best fit

There must be a reasonable balance of points about the line of best fit
There must be at least 5 plots on the grid for this mark to be awarded Do not allow a straight line to be drawn through a distinct curve trend Allow an acceptable curve through a curved trend of points
(e) (ii) Determination of gradient

Hypotenuse of Δ used must be greater than half the length of the drawn line
Check the read-offs and ratio. Read-offs must be accurate to half a small square
Do not allow this mark if a curve has been drawn
(e) (ii) $\quad y$-intercept

The value must be read to half a small square Do not allow this mark if a curve has been drawn
$A=$ candidate's value of gradient
(f) $\quad B=$ candidate's value of intercept

Unit of A and B both correct $\left(\mathrm{s}^{-4}\right)$
(g) Measurement of L

The value should be in the range $40 \mathrm{~cm} \pm 2 \mathrm{~cm}$. Can be implied in the working It may be necessary to refer to the Supervisor's Report
(g) Correct method of working to give a value for g in range 9.0 to $11.0 \mathrm{~m} \mathrm{~s}^{-2}$
A POT error anywhere in the working will not score this mark
(g)

Sf in g
Allow 2 or 3 sf only. Apply to any value given
A bald value with no working cannot score this mark
(g)

Unit of g correct (and consistent with other measurements, e.g. L)
There must be a numerical value of g for this mark to be scored
A bald value with no working cannot score this mark

25 marks in total

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/04
PHYSICS
Paper 4 (Structured Questions (A2 Core))

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks.
B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

from infinity to the point.(use of 1 kg in the definition - max 1/2)
potential at infinity defined as being zero. B1
fows alw outractivB1
(max potential is at infinity - allow 1/3)change $=6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times\left(\left\{6.4 \times 10^{6}\right\}^{-1}-\left\{1.94 \times 10^{7}\right\}^{-1}\right)$C2
change $=4.19 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$ (ignore sign) A1
(ii) $\quad 1 / 2 m v^{2}=m \Delta \varphi$ C1
$v=9150 \mathrm{~m} \mathrm{~s}^{-1}$ A1
(d)$\begin{array}{ll}x & \\ x & \\ \checkmark & \\ \checkmark & \text { (-1 for each error or omission) }\end{array}$B2
heat gained (silver) $=0.05 \mathrm{~m} \times 235 \times(1340-300)+0.05 \mathrm{~m} \times 105000$..C1, C1 $122.5 \mathrm{~m} \Delta T=17470 \mathrm{~m}$
$\Delta T=143 \mathrm{~K}$. C1
(c) e.g. thermocouple/resistance thermometer B1
3 (a) B1this is at the driver frequency
(allow 1 mark for recognition that this is resonance)
peak flatter B1
peak at f_{0} or slightly below f_{0}[3]
(ii) $\quad V=Q / 4 \pi \varepsilon_{0} r$

$$
\begin{aligned}
& =\left(9.8 \times 10^{-6}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times 0.21\right) \\
& =4.2 \times 10^{5} \mathrm{~V} \text {. }
\end{aligned}
$$

(c) e.g. sphere not smooth, humid air, etc ...B1

5 (a) centripetal force $=m v^{2} /$ r...B1
magnetic force $F=B q v$..B1

$r=m v / B q$...A0
(b) $\quad \begin{aligned} r_{\alpha} / r_{\beta} & =\left(m_{\alpha} / m_{\beta}\right) \times\left(q_{\beta} / q_{\alpha}\right) \ldots . ~\end{aligned}$
(c) (i) $\quad \begin{aligned} r_{\alpha} & =\left(4 \times 1.66 \times 10^{-27} \times 1.5 \times 10^{6}\right) /\left(1.2 \times 10^{-3} \times 2 \times 1.6 \times 10^{-19}\right) \\ & =25.9 \mathrm{~m} \ldots \ldots . ~\end{aligned} 2$

(d) (i) deflected upwards..B1
but close to original direction ..B1
(ii) opposite direction to α-particle and 'through side'B1

6 (a) greater binding energy gives rise to release of energy................... M1
so must be yttrium ..A1
(b) probability of decay... M1
of a nucleus per unit time..A1

$$
\begin{aligned}
& =6.98 \times 10^{-10} \mathrm{~kg} \text {. } \\
& \text { A1 }
\end{aligned}
$$

(ii) $\quad A=A_{0} \mathrm{e}^{-2 t}$
$\mathrm{A} / \mathrm{A}_{0}=\mathrm{e}^{-0.025 t}$
C1

$$
=0.88 \text {. }
$$

.A1

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME
MAXIMUM MARK: 30
SYLLABUS/COMPONENT: 9702/05
PHYSICS
Paper 5 (Practical (A2))

Page 1

6 sets of readings ($\mathbf{I} \neq \mathbf{0}$) scores 1 mark
Allow more than 6 sets without penalty
Write the number of readings as a ringed total by the table
Choose a row in the table
Check a value for $\tan \theta$. Tick if correct and score 1 mark
If incorrect, write in correct value and do not award the mark Ignore small rounding errors
All values of $\theta<90^{\circ}$ score 1 mark
Minor help from the Supervisor -1. Major help, then -2
If help has been given then write SR at the top of the front page of the script, and give a brief explanation of the type of help that has been given by the table of results
(a) (v) Repeats

Expect to see at least two sets of readings for θ, with an average calculated
Do not award this mark if all the results are the same

(a) (v) Quality of results	2/1/0	
	Judge by scatter of points about the line of best fit	
6 trend points with little scatter scores 2 marks		
	trend points with little scatter scores 1 mark	
	Shallow curve can score 1 mark	
	4 trend points only scores zero	
	Wrong trend or 'impossible results' cannot score these marks	

(a) (v) Column headings

Apply to the current column only
There must be some distinguishing mark between the quantity and the unit
Allow I/A, $I(\mathrm{~A})$ or I in A

(a) (v) \quadConsistency Apply to both θ and I	$2 / 1 / 0$
All values of θ must be given to the same number of d.p.	
	Allow θ to be given to the nearest half degree or nearest degree
All values of I must be given to the same number of d.p. (0.1 A or 0.01 A)	

(a) (vi) Justification of sf in $\tan \theta \quad 2 / 1 / 0$

Answer must relate the number of sf in θ to the number of sf in $\tan \theta$
Do not allow answers in terms of decimal places
'Raw data' ideas can score 1 mark
(b) (i) Axes

The axes must be labelled with the quantities plotted Ignore units on the axes
The plotted points must occupy at least half the graph grid in both the x and y directions (i.e. 4 large squares in the x-direction and 6 large squares in the y-direction)
Do not allow more than 3 large squares between the labels on an axis Do not allow awkward scales (e.g. 3:10, 6:10, etc.)
(b) (i) Plotting of points

All the observations must be plotted
Count the number of plots and ring this total on the grid
Do not allow plots in the margin area
Check one suspect plot. Circle this plot. Tick if correct. If incorrect, mark the correct position with a small cross and use an arrow to indicate where the plot should have been, and -1. Allow errors up to and including half a small square
(b) (i) Line of best fit

Only a drawn straight line through a linear trend is allowable for this mark
This mark can only be awarded for 5 or more plots on the grid There must be a reasonable balance of points about the drawn line Do not allow a line of thickness greater than half a small square
(b) (ii) Gradient

Ignore any units given with the value
Hypotenuse of Δ must be $>$ half the length of line drawn
Check the read-offs. Work to half a small square. $\Delta x / \Delta y$ gets zero
Values taken from the table that lie on the line to within half a small square are acceptable
Do not award this mark if a curve has been drawn
(c) $\quad k=$ candidate's gradient 1
(c) Unit of k (i.e. A^{-1}) 1
(c) $\quad \mathrm{SF}$ in $k \quad 1$

Allow 2 or 3 sf only
(d) (i) Value of θ when $I=15 \mathrm{~A}$

Method of working must be checked. Ignore unit and small rounding errors
(d) (ii) Reasons for not being able to verify experimentally

Heating problems with the wires
Fuse may blow on psu/max. output current on psu exceeded
Do not allow vague answers such as 'It is dangerous'

20 marks in total

2 A1 Sensible choice of equipment and procedure OK
(i.e. measure count rate and p.d.; change p.d. and measure new count rate)
Unworkable methods/inappropriate choice of apparatus cannot score this mark

A2 Voltmeter shown in parallel with the GM tube or the supply
A3 Ratemeter/scalar/datalogger connected to terminals A and B of GM tube

B1 Radium or Cobalt source used
B2 Reason for choice
Answer must relate to half-life. This mark cannot be scored if B1 = 0
B3 \quad Method of removing α or β radiation (depending on source used)
Appropriate absorber is expected. Accept 'aluminium' or thin lead Could be shown on the diagram. Allow electric or magnetic deflection

C1/2 Any two safety precautions
e.g. use source handling tool
store source in lead lined box when not in use do not point source at people/do not look directly at source
Do not allow 'protective clothing', 'lead suits', 'lead gloves', 'goggles', etc.

D1/2 Any good/further detail time
Sensible value of p.d. applied to GM tube (i.e. 50 V to 1000 V) Keep distance from source to GM tube constant/fixed/same, etc.
Subtract count rate due to background radiation
Aluminium sheets must be mm or cm thickness
Allow other valid points. Any two, one mark each

10 marks in total

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/06

PHYSICS
Paper 6 (Options (A2))

Page 1	Mark Scheme
	A/AS LEVEL EXAMINATIONS - JUNE 2003

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For mark to be scored, the point to which it refers must be seen specifically in the candidate's answe

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Option A - Astrophysics and Cosmology

1 (a) large mass of gas (allow H and He) B1
giving off e.m. radiation (allow light) B1
held together by gravitational forces, or other good physics B1
(b) group of (many) stars B1
any further detail e.g. some dimension, shape, etc B1
(c) rocky or gaseous object B1
orbiting a star B1
seen by reflected light B1
2 measure wavelength of light received from galaxy B1
measure wavelength of light in laboratory/on Earth B1
(fractional) change in wavelength related to speed or Doppler shift gives speed B1
3 (a) $\quad v=H_{0} d$
$H_{0}=\left(1.8 \times 10^{4}\right) / 430$ C1
$=42 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ A1
(b) (i) $1 \mathrm{pc}=3.1 \times 10^{16} \mathrm{~m}$. B1
age $=1 / H_{0}$
$=\left(3.1 \times 10^{22}\right) /\left(42 \times 10^{3}\right)$ C1
$=7.4 \times 10^{17} \mathrm{~s}$ A1
(ii) Earth-Moon distance $=3.8 \times 10^{5} \mathrm{~km}$ (allow 2-7×105 km). C1
speed $=\left(3.8 \times 10^{8}\right) /\left(7.4 \times 10^{17}\right)$ $=5.1 \times 10^{-10} \mathrm{~m} \mathrm{~s}^{-1}$ A1
(c) This is local gravitational attraction B1
On wider scale, galaxies are receding B1
Option F - The Physics of Fluids
4 (a) (i) equal B1
(ii) density of ice is less B1
(b) mass of ice becomes equal mass of water (allow weight) M1
melted ice fills space of water displaced by ice M1
so level does not change A1
5 (a) e.g. streamline, incompressible non-viscous, horizontal flow. ..(1 each, max 3) B3
(b) air close to train moves at the speed of the train/air dragged along by train B1
air at some distance from the train is stationary/velocity is less B1
(so) air pressure is lower close to the train. M1
pressure difference could force passengers into side of train A1

Page 3	Mark Scheme
	A/AS LEVEL EXAMINATIONS - JUNE 2003

(ii) kinetic energy given to air to cause turbulence or work needed to overcome drag force
(b) (i) drag coefficient/drag constant... B1
(ii) power $=F v$ and hence ...M1

$v^{3}=2.67 \times 10^{5}$
$v=64 \mathrm{~m} \mathrm{~s}^{-1}$.
A1

Option M - Medical Physics

7 (a) electrons fired at metal target .. B1
electrons decelerated giving off (e.m.) radiation........................... B1
range of decelerations, so continuous spectrum B1
also, electrons in inner orbits are excited..................................... B1
de-excitation gives characteristic line spectrum B1
(b) (i) increase cathode/tube current.. B1
(iii) use aluminium filter (allow metal filter) ... B1

$x=1.33 \mathrm{~cm}$ A1

8 (a) | produces greater intensity (at focus) |
| :--- |
| limits region of cell damage |
| allows for accurate guidance ... B2 |

(b) laser beam cauterises tissue $\begin{aligned} & \text { can produce coagulation } \\ & \text { vaporisation of water in cells.. B2 }\end{aligned}$
\{in (a) and (b), allow 1 mark each up to max of 3 in either, total not to exceed 4\}

9 (a) ability to detect (small) changes in loudness/intensity.................. B1
depends on // $\Delta /$... B1

(ii) increase anode voltage... B1(iii) use aluminium filter (allow metal filter)31

$\ln 2=0.40 \mu$

$0.1=\mathrm{e}^{-1.733 \mathrm{x}}$$x=1.33 \mathrm{~cm}$
$\Delta I . L .=10 \lg (\Delta / / I)$ or $I . L .=10 \lg \left(I / I_{0}\right)$ C1
$3.0=10 \lg \left(I_{2} /\left(4.5 \times 10^{-5}\right)\right.$. C1
$I_{2}=9.0 \times 10^{-5} \mathrm{Wm}^{-2}, \Delta /=4.5 \times 10^{-5} \mathrm{~W} \mathrm{~m}^{-2}$ A1

Page 4	M
	A/AS LEVEL EX
Option P - Environmental Physics	

10 (a) source of (useful) energy
derived from
(b) resources: total deposits of fossil fuels .. B1
reserves: fossil fuels that can be extracted (economically) B1
11 (a) heavy nucleus/heavy atom/U-235, etc ... B1
bombarded by neutron... B1
produces two fragments of about equal mass.............................. B1
plus neutrons and energy .. B1
(b) (i) slows down neutrons ... B1
(ii) absorbs neutrons. .. B1
(iii) maintains coolant around reactor core ... B1
provides biological shield/prevents radiation leakage B1

= (1 - 313/813) ... C1
= 0.61 .. A1
(b) (i) e.g. heat loss in exhaust gases/cooling towers B1
(ii) e.g. pre-heat water entering boiler, either increase T_{H} or decrease T_{L} re-heat steam in multistage turbine, CHP system...(1 each, max 2) B2
(c) e.g. thermal, visual, etc.............(1 each, max 2)................................. B2

Option T - Telecommunications
13 (a) correct signal voltages.............(-1 each error or omission)........... B2
corresponding binary numbers...(-1 each error or omission)........... B2
(b) signal changes at correct positions .. B1
correct levelsB1
(c) (use ADC and DAC with) larger number of bits.............................. M1
makes smaller ‘step height' ..A1
sample more frequently ... M1
makes smaller ‘step depth’...A1
14 (a) central conductor with outer screening...B1
insulation between inner and outer and also as cladding................B1
(b) e.g. greater bandwidth
immune to e.m. interference
radiates less e.m. power
less cross-talk
lower noise levels \qquad (1 each, max 3) B3

15
$10 \mathrm{~m} \rightarrow 100 \mathrm{~m} \quad$ worldwide more than $100 \mathrm{~m} \quad 1000 \mathrm{~km}$
less than $10 \mathrm{~m} \quad$ line of sight or worldwide using satellites (-1 each error or omission)

B5

