www.papacambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the June 2004 question papers

	9702 PHYSICS
9702/01	Paper 1 (Multiple Choice (AS)), maximum mark 40
9702/02	Paper 2 (Structured Questions (AS)), maximum mark 60
9702/03	Paper 3 (Practical (AS)), maximum mark 25
9702/04	Paper 4 (Structured Questions (A2 Core)), maximum mark 60
9702/05	Paper 5 (Practical (A2)), maximum mark 30
9702/06	Paper 6 (Options (A2)), maximum mark 40

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the guestion papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9702 (Physics) in the June 2004 examination.

sholds taken for	1				Cambridge
	maximum	minimum	mark require	d for grade:	
	mark available	Α	В	E	•
Component 1	40	34	32	22	
Component 2	60	45	41	27	
Component 3	25	19	17	11	
Component 4	60	40	33	17	
Component 5	30	24	22	14	
Component 6	40	21	18	10	
	•		•	•	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

www.PapaCambridge.com

June 2004

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/01

PHYSICS
Paper 1 (Multiple Choice (AS))

Page 1	Mark Scheme	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	9 2

	Mark Schen	ne	44
A/AS LE	VEL EXAMINATIO	NS - JUNE 2004	3 3
Question Number	Key	Question Number	Key C A C B A
1	В	21	С
2	Α	22	Α
3	Α	23	С
4	С	24	В
5	С	25	Α
6	С	26	В
7	В	27	C
8	D	28	D
9	D	29	D
10	В	30	A
11	Α	31	D
12	С	32	В
13	Α	33	С
14	В	34	Α
15	D	35	D
16	В	36	В
17	A	37	D
18	С	38	С
19	Α	39	С
20	D	40	D

www.PapaCambridge.com

June 2004

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02

PHYSICS
Paper 2 (Structured Questions (AS))

Page 1	Mark Scheme	Sy. Zaper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	970 2

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

Sapa Cambridge .com B marks: These are awarded as independent marks, which do not depend on other marks. For a mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Sy. Saper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	970 2
		all

				14	20
1	(a)		scalar: magnitude only vector: magnitude and direction (allow scalar with direction) (allow 1 mark for scalar has no direction, vector has direction)	В	Cannininge Conn
	(b)		diagram has correct shape with arrows in correct directions resultant = $13.2 \pm 0.2 \text{ N}$ (allow 2 sig. fig) (for $12.8 \rightarrow 13.0$ and $13.4 \rightarrow 13.6$, allow 1 mark) (calculated answer with a correct sketch, allow max 4 marks) (calculated answer with no sketch – no marks)	M1 A1 A2	2 [4] S.COM
2	(a)	/:\	$\lambda = 0.6 \text{ m}$	ital B1	[6]
2	(a)	(i) (ii)	frequency (= v/λ) = 330/0.60 = 550 Hz (use of c = 3 x 10 ⁸ ms ⁻¹ scores no marks)	C1 A1	
	(b)		amplitude shown as greater than a but less than 2a and constant correct phase (wave to be at least three half-periods, otherwise -1 overall)	B1 B1	
2	(0)	/:\	То	otal D4	[5]
3	(a)	(i) (ii)	scatter of points (about the line) intercept (on t^2 axis) (note that answers must relate to the graph)	B1 B1	
	(b)	(i)	gradient = $\Delta y/\Delta x = (100 - 0)/(10.0 - 0.6)$ gradient = 10.6 (cm s ⁻²) (allow ±0.2)	C1 A1	
			(Read points to within $\pm \frac{1}{2}$ square. Allow 1 mark for 11 cm s ⁻²		
		/::\	i.e. 2 sig fig, -1. Answer of 10 scores 0/2 marks)		
		(ii)	$s = ut + \frac{1}{2}at^2$	B1	
			so acceleration = 2 x gradient acceleration = 0.212 m s ⁻²	B1 B1 otal	
4	(a)	(i) (ii)	(p =) mv	B1	
		(11)	$E_{\rm k} = \frac{1}{2} m v^2$	B1	
			algebra leading to $E_k = \rho^2/2m$	M1 A0	
	(b)	(i)	$\Delta p = 0.035 (4.5 + 3.5)$ OR $a = (4.5 + 3.5)/0.14$ = 0.28 N s = 57.1 m s ⁻²	C1	l
			force= $\Delta p / \Delta t$ (= 0.28/0.14) OR F = ma (= 0.035 x 575.1) (allow e.c.	,	
			= 2.0 N Note: candidate may add mg = 0.34 N to this answer, deduct 1 mark	A1	
		(ii)	upwards 1 0 005 (4.5° 0.5°)	B1	
		- ·	loss = $\frac{1}{2}$ x 0.035 (4.5 ² – 3.5 ²)	C1	
			= 0.14 J (No credit for $0.28^2/(2 \times 0.035) = 1.12 \text{ J}$)	A1	[2]
	(c)		e.g. plate (and Earth) gain momentum		
			i.e. discusses a 'system' equal and opposite to the change for the ball	B1	
			i.e. discusses force/momentum so momentum is conserved	M 1	1
			i.e. discusses consequence	A1 otal	[3] [12]

Page 3	Mark Scheme	Sy. Saper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	970 2
		12
		80.

							20	6
5	(a)	(i)	distance = $2\pi nr$. .		,		all.
		(ii)	work done = $F \times 2 \pi nr$ (accept e.c.	c.t.)			ВТ	Dr.
	(b)		total work done = $2 \times F \times 2\pi nr$				В1	Cannbridge Conn
			but torque $T = 2Fr$				В1	S
			hence work done = $T \times 2\pi n$				A0	[2]
	(c)		power = work done/time (= 470 x	2π x 2400)/	60)			
			$= 1.2 \times 10^5 \text{ W}$,	,		A1	[2]
•	(-)		Mhan hua (an masas)	(mat la	and an links of such	Total	Б4	[6]
6	(a)		When two (or more) waves meet resultant <u>displacement</u>	(not superp	ose or interfere)		B1 M1	
			is the sum of individual (displacer	ments)			A1	[3]
	4.3	<i>(</i> 1)		,				
	(b)	(i) (ii)	any correct line through points of any correct line through intersecti				B1 B1	[2]
		(…)	any control mic unough intersecti		ot and a nough		ים	(* -)
	(c)	(i)	$\lambda = ax/D$ OR $\lambda = a\sin \theta$ ar	$d \theta = x/D$			C1	
			$650 \times 10^{-9} = (a \times 0.70 \times 10^{-3})/1.2$ $a = 1.1 \times 10^{-3}$ m				C1	[2]
		(ii) 1	a = 1.1 x 10 ° m no change				A1 B1	[3]
			brighter				B1	
			no change (accept stay/remain da	ark)			В1	[3]
_	(-)	(:)	D = 1//			Total	04	[11]
7	(a)	(i)	P = VI current = 60/240 = 0.25 A				C1 A1	
		(ii)	R (= V/I) = 240/0.25				M1	
		. ,	= 960 Ω				Α0	[3]
	(b)		$R = \rho L/A$ (wrong formula, 0/3)				C1	
	` '		$960 = (7.9 \times 10^{-7} \times L)/(\pi \times \{6.0 \times 10^{-7} \times L\})$	0^{-6} } ²)			C1	
			L = 0.137 m				A1	[3]
			(use of $A = 2\pi r$, then allow 1/3 ma	arks only for	resistivity formula)			
	(c)		e.g. the filament must be coiled/it	is long for a	a lamp		В1	[1]
	` '		(allow any sensible comment bas					
_	(-)		V/5 D/D		0.5 / 0000	Total	6 4	[7]
8	(a)		$V/E = R/R_{\text{tot}}$ 1.0/1.5 = $R/(R + 3900)$	or or	0.5 = / x 3900 1.0 = 0.5 <i>R</i> /3900		C1 M1	
			$R = 7800\Omega$.	or	$R = 7800\Omega$		A0	[2]
				-				
	(b)		V= 1.5 x (7800/{7800 + 1250})	or	I = 1.5/(7800 + 1250))	C1	[0]
			= 1.29 V	or	V = IR = 1.29 V		A1	[2]
	(c)		Combined resistance of R and vo	Itmeter is 39	900 Ω		C1	
			reading at 0 °C is 0.75 V				A1	[2]
						Total		[6]
						i Ulai		[6]

www.PapaCambridge.com

June 2004

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9702/03

PHYSICS
Paper 3 (Practical (AS))

Page I	Wark Scheme Sy	apei
	A/AS LEVEL EXAMINATIONS - JUNE 2004 970	
(a)	Pointer B reading to the nearest half millimetre or millimetre Extension correct and to nearest millimetre Condone negative values (i.e. do not penalise 'upside down' rule)	OBC BINDRINGE COM
(b)	Calculation of spring constant to 2 or 3 sf $k = 0.98/x$ answer must be given in N m ⁻¹ . Ignore any negative signs. Do not allow fractions	1 Se.com
(c) (i)	Diameter of one mass to at least 3 sf Accept value ± 0.2 mm of Supervisor's value	1
(ii)	Percentage uncertainty in diameter One mark for Δd (either 0.1 mm or 0.2 mm). One mark for correct ratio and multiplication by 100.	2
(iii)	Cross-sectional area One mark for $A = \pi r^2$. One mark for correct substitution into $A = \pi r^2$. ECF from (c)(i) . Do not allow the second mark if diameter substituted into $A = \pi r^2$. Wrong formula scores zero in this section.	2
(d) (iv)	Measurements Expect to see six sets of results in the table (one mark). <i>l</i> must be correct; check a value (one mark). If correct, then tick. If incorrect, then do not award the second mark, and write in the correct value. If pointer reading not shown then this mark cannot be scored. Minor help given by Supervisor, -1. Major help, then -2.	2
	Column headings for d and l (one mark for each correct heading). Expect to see a quantity and a correct unit. There must be a distinguishing feature between the quantity and the unit.	2
	Consistency of d and l readings. Values should be given to the nearest mm. One mark each.	2
(e) (iii)	Gradient is negative. No ecf from misread rule if gradient is positive.	1
	Gradient calculation. Δ used must be greater than half the length of the drawn line. Check the read-offs (must be correct to half a small square). Ratio must be correct (i.e. $\Delta y / \Delta x$ and not $\Delta x / \Delta y$).	1
Graph	Axes Scales must be such that the plotted points occupy at least half the graph grid in both the <i>x</i> and <i>y</i> directions (i.e. at least 6 large squares on the longer side of the grid and at least 4 squares on the shorter side of the grid). Scales must be labelled. Do not allow awkward scales (e.g. 3:10, 6:10 etc.). Allow reversed axes (penalise in section (f))	1
	Plotting of points Count the number of plots and write as a ringed total on the graph grid. All the observations must be plotted or this mark cannot be scored. Check a suspect plot. Circle and tick if correct. If incorrect, show correct position with arrow, and -1. Work to half a small square.	1
	Line of best fit There must be at least 5 trend plots for this mark to be scored. There must be a reasonable balance of points about the line of best fit.	1

Mark Scheme

Page 1

Page 2	Mark Scheme Sy	aper
	A/AS LEVEL EXAMINATIONS - JUNE 2004 970	
	Mark Scheme A/AS LEVEL EXAMINATIONS - JUNE 2004 Curved trend cannot score this mark. Quality of results Judge by scatter of points about the line of best fit. There must be at least 5 trend plots for this mark to be scored. Incorrect trend (i.e. positive gradient) will not score this mark.	Oa Cambi
(f)	Gradient equated with $\frac{-\rho_w Ag}{k}$. Condone misuse of negative sign.	1
	Value in range 800 – 1200 kg m ⁻³ (or 0.80 to 1.20g cm ⁻³) This mark cannot be scored if the gradient has not been used. This mark will not be scored if there is a Power Of Ten error in the working or reversed axes.	1
	Unit correct (kg m ⁻³) If another unit has been given then it must be consistent with the value.	1
	Significant figures in $\rho_{\rm w}$ Accept 2 or 3 sf only. Ignore trailing zeros (except $\rho_{\rm w}$ = 1000)	1
(g)	Difficulty e.g. hard to see the water surface/surface tension problems/refraction effects/parallax errors. Do not allow vague 'human error'.	1
	Improvement e.g. use calibrated beakers or masses/paper behind/mirror behind/travelling microscope Do not allow 'use dye'/repeat readings.	1

25 marks in total

Page 3	Mark Scheme	Sy Saper
. ugo o	A/AS LEVEL EXAMINATIONS - JUNE 2004	970 72
June 20	004	Add Can
GCE	ADVANCED SUBSIDIARY LEVEL AND ADV	VANCED LEVEL TOTAL
		177

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/04

PHYSICS Paper 4 (Structured Questions (A2 Core))

Page 1	Mark Scheme	32	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	2	04

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. P B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

	D ₂	20 2	Mark Scheme	4	J D	nor
	_ Fa	ge 2	A/AS LEVEL EXAMINATIONS - JUNE 2004	The .	1	ареі 04
			7 WIG ELVEL ENGLISHING THING SOME 2001	.V	1	<u> </u>
1	(a)		charge is quantised/enabled electron charge to be measured	MMN PO	OOC	1
	(b)		all are (approximately) $n \times (1.6 \times 10^{-19} \text{ C})$ so $e = 1.6 \times 10^{-19} \text{ C}$ (allow 2 sig. fig. only summing charges and dividing ten, without explanation scores	s 1/2	M A1	3
2	(a)		mean (value of the) square of the speeds (velocities) of the atoms/particles/molecules	Total	M1 A1	[3] [2]
	(b)	(i)	$p = \frac{1}{3} \rho \langle c^2 \rangle$		C1	
		(ii)	$\langle c^2 \rangle = 3 \times 2 \times 10^5 / 2.4 = 2.5 \times 10^5$ r.m.s speed = 500 ms ⁻¹ new $\langle c^2 \rangle = 1.0 \times 10^6$ or $\langle c^2 \rangle$ increases by factor of 4 $\langle c^2 \rangle \propto T$ or $3/2 kT = 1/2 \text{ m} \langle c^2 \rangle$ $T = \{(1.0 \times 10^6) / (2.5 \times 10^5)\} \times 300$		C1 A1 C1 C1	[3]
			$7 - \{(1.0 \times 10) / (2.5 \times 10)\} \times 300$ = 1200 K		A1	[3]
			- 1200 K	Total	Α1	[8]
3	(a)	(i) (ii)	(force) = $GM_1M_2/(R_1 + R_2)^2$ (force) = $M_1R_1 \omega^2$ or $M_2R_2 \omega^2$	Total	B1 B1	[2]
	(b)		$\omega = 2\pi/(1.26 \times 10^8) \text{ or } 2\pi/T$ = 4.99 x 10 ⁻⁸ rad s ⁻¹		C1 A1	[2]
			allow 2 s.f.: 1.59π x 10^{-8} scores $1/2$,	L-1
			4			
	(c)	(i)	reference to either taking moments (about C) or same (centrip	etal)		
	` ,	.,	force	,	B1	
			$M_1R_1 = M_2R_2$ or $M_1R_1 \omega^2 = M_2R_2 \omega^2$		B1	
			hence $M_1/M_2 = R_2/R_1$		Α0	[2]
		(ii)	$R_2 = 3/4 \times 3.2 \times 10^{11} \text{ m} = 2.4 \times 10^{11} \text{ m}$		A1	
			R_1 = (3.2 x 10 ¹¹) – R_2 = 8.0 x 10 ¹⁰ m (allow vice versa) if values are both wrong but have ratio of four to three, then a 1/2	llow	A1	[2]
	(d)	(i)	$M_2 = \{(R_1 + R_2)^2 \times R_1 \times \omega^2\} I G \text{ (any subject for equation)}$ = $(3.2 \times 10^{11})^2 \times 8.0 \times 10^{10} \times (4.99 \times 10^{-8})^2 / (6.67 \times 10^{-11})$		C1 C1	
		(ii)	= 3.06 x 10 ²⁹ kg less massive (only award this mark if reasonable attempt at (i (9.17 x 10 ²⁹ kg for more massive star))))	A1 B1	[4]
			·	Total		[12]
4	(a)		e.g. amplitude is not constant or wave is damped do not allow 'displacement constant' should be (-)cos, (not sin)		B1 B1	[2]
			Should be (-)cos, (not sin)		ы	[2]
	(b)		T = 0.60 s $\omega = 2\pi/T = 10.5 \text{ rad s}^{-1} \text{ (allow } 10.4 \rightarrow 10.6)$		C1 A1	[2]
			,			
	(c)		same period		B1	
			displacement always less		M1	
			amplitude reducing appropriately		A1	[3]
			for 2 nd and 3 rd marks, ignore the first quarter period	Tatal		[7]
				Total		[7]

				9	00	
5	(a)		the (value of the) direct current that dissipates (heat) energy at the same rate (in a resistor) allow 'same power' and 'same heating effect'		DaCa	Morio
	(b)		$\sqrt{2}I_{\rm rms} = I_0$		В1	[1]
	(c)	(i) (ii)	power $\propto I^2$ or $P = I^2R$ or $P = VI$ ratio = 2.0 (allow 1 s.f.) advantage: e.g. easy to change the voltage disadvantage: e.g. cables require greater insulation		C1 A1 B1	[2]
			rectification – with some justification		B1	[2]
	(d)	(i) (ii)	3.0 A (allow 1 s.f.) 3.0 A (allow 1 s.f.)	Γotal	A1 A1	[2]
6			0 - + (-1 for each error) + + 0 (-1 for each error) + + 0 (-1 for each error)		B2 B2 B2	[9] [6]
7	(a)		$\lambda = h/p \text{ or } \lambda = h/mv$ with λ , h and (or mv) p identified	Γotal	M1 A1	[6] [2]
	(b)		$E = \frac{1}{2} mv^{2}$ $= p^{2}/2m \text{ or } v = \sqrt{(2E/m)}, \text{ hence}$ $\lambda = h/\sqrt{(2mE)}$		C1 M1 A0	[2]
	(c)		E = qV (0.4 x 10 ⁻⁹) ² x 2 x 9.11 x 10 ⁻³¹ x 1.6 x 10 ⁻¹⁹ x $V = (6.63 \text{ x } 10^{-34})^2$ V = 9.4 V (2 s.f. scores 2/3)	Fatal	C1 C1 A1	[3]
8	(a)		S shown at the peak	Γotal	B1	[7] [1]
	(b)	(i) (ii)1	Kr and U on right of peak in correct relative positions binding energy of U-235 = 2.8649 x 10 ⁻¹⁰ J binding energy of Ba-144 = 1.9211 x 10 ⁻¹⁰ J		B1	[1]
		2	binding energy of Ba-144 = 1.9211 X 10 ⁻¹⁰ J binding energy of Kr-90 = 1.2478 x 10^{-10} J energy release = 3.04 x 10^{-11} J (-1 if 1 or 2 s.f.) 2. $E = mc^2$		C2 A1 C1	[3]
			$m = (3.04 \times 10^{-11})/3.0 \times 10^{8})^{2} = 3.38 \times 10^{-28} \text{ kg}$ (ignore s.f.) e.g. neutrons are single particles,		A1	[2]
		(111)	neutrons have no binding energy per nucleon		B1	[1]

neutrons have no binding energy per nucleon

Mark Scheme

A/AS LEVEL EXAMINATIONS - JUNE 2004

Paper

04

В1

Total

[1] [8]

Page 3

www.PapaCambridge.com

June 2004

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 9702/05

PHYSICS Paper 5 (Practical (A2))

		4
Page 1	Mark Scheme	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	Paper 05
		a.
		San
on 1		- al
		38.
Sensible use of	fiducial marker placed at centre of oscillation/mean position	and dide
equilibrium posi	ition	8
		.62
Measurements		3
	ne mark. Allow more than 6 sets without penalty.	· · ·
vviite the numb	er of readings as a ringed total by the table.	

Question 1

(a) (v) Sensible use of fiducial marker placed at centre of oscillation/mean position/ equilibrium position

(a) (vi) Measurements

Choose a row in the table. Check values for $T^2d \& d^2$. Tick if correct.

One mark each. If incorrect, write in correct values. Ignore small rounding errors.

Impossible values of d or t, -1. Misread stopwatch -1.

Minor help from the Supervisor, -1. Major help, then -2.

Repeats

Expect to see at least two sets of readings of raw times.

At least half the raw times > 20 s

Column heading for T^2d

The column heading must contain a quantity and a unit (e.g. s² m or s² cm).

There must be some distinguishing mark between the quantity and the unit.

Consistency

Apply to d (all values of d must be given to the nearest millimetre).

Check by row in the table; compare with raw values of d.

The number of significant figures in d^2 must be the same as, or one better than, the number of significant figures in d.

(a) (vii) Justification of sf in d^2

Answer must relate the number of sf in d.

Do not allow answers in terms of decimal places.

1

1

1

1

1

1

	<u> </u>	A/AS LEVEL EXAMINATIONS - JUNE 2003	05
			6
(b) (i)	The plotted p directions (i.e Do not allow Do not allow	ust be labelled with the quantities plotted. Ignore units on the axes. points must occupy at least half the graph grid in both the x and y e. 4 large squares in the x -direction and 6 large squares in the y -direction). If more than 3 large squares between the labels on an axis. If awkward scales (e.g. 3:10, 6:10, 8:10 etc.). If seed (i.e. d^2 against T^2d) then zero and ecf.	Da Cambridg
	Do not allow Check one s cross and us	oints rvations must be plotted. r plots in the margin area. suspect plot. Circle this plot. Tick if correct. If incorrect, mark the correct position se an arrow to indicate where the plot should have been, and score zero. Allow of g half a small square.	
	This mark ca There must b	fit n straight line through a linear trend is allowable for this mark. an only be awarded for 5 or more plots on the grid. be a reasonable balance of points about the drawn line. y a line of thickness greater than half a small square.	1
	5 trend plots This mark ca	sults atter of points about the line of best fit. s can score this mark. Curved trend scores zero. an only be scored if a graph of d^2 against T^2d or d^2 has been plotted.	1
(b) (iii)	Hypotenuse Check the re	Inits given with the value. of Δ must be > half the length of line drawn. ead-offs. Work to half a small square. $\Delta x/\Delta y$ gets zero. In from the table that lie on the line to within half a small square are acceptable.	1
		hust be read to the nearest half square. ation from $y = mx + c$	1
(c)		of line of best fit value is expected. Substitution method scores zero.	1
		te's value for the <i>y</i> -intercept value is expected. Substitution method scores zero.	1
		rrect and consistent with value (e.g. s ² m or s ² cm) illow ecf from column heading in table.	1
(d)	Must be in ra A power of te	when $d = 1.0$ cm ange $3 - 8$ s. en error anywhere in the working will result in this mark not being scored. st be checked. Bald answer scores zero.	1

Mark Scheme

Page 2

20 marks in total

Paper

		6
Page 3	Mark Scheme	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	05

Question 2

(less than 1 mm) sheet or foil

	Page 3	Mark Scheme	Paper
		A/AS LEVEL EXAMINATIONS - JUNE 2003	05
			Paper 05
			S.
Quest	ion 2		9h
A 4	Canaible abaice	of any imposed and basis idea OV	Orio
A 1		e of equipment and basic idea OK ic field/detector	1
	•	hoice of apparatus cannot score this mark.	
	Ignore lead or a	aluminium plates at this stage.	
A2	Method of mea	suring angle of deflection	1
		t edge of large protractor/lengths & trig ratio used)	•
		gue 'use a protractor'.	
	This mark can l	be awarded even if the detector has not been specified.	
A3		/search coil/current balance to measure field strength	1
		z coils expression if Helmholtz coils used.	
	Allow a current	or voltage measurement as indication of field strength (as $I \alpha B$)	
B1	Method of remo	oving α radiation or statement that α radiation almost undeflected	1
		stance to detector > few cm/air to absorb alpha	
		n on the diagram. Do not allow lead/aluminium plate. nown deflecting in the opposite direction to β on the diagram.	
	Allow a to be si	nown deflecting in the opposite direction to p on the diagram.	
B2	•	deflected/deflect beta particles using electric field	1
	Can be shown	on diagram. Do not allow 'absorb gamma with lead plate'.	
В3	Workable proce	edure for uniform fields	1
	Measure deflec	tion and field strength; <u>change current</u> in coils and repeat.	
C1/2	Any two safety	precautions	2
	e.g. use sour	ce handling tool	
		e in lead lined box when not in use	
		source at people/do not look directly at source heet at 'end of experiment' to absorb unwanted rays	
	·	·	
D1/2		er detail. Examples of creditworthy points might be:	2
		or (GM tube/film/screen/scintillation counter). N/a cloud chamber/CRO is to allow for randomness of activity	
		on of beta on diagram/left hand rule ideas (diagram or written)	
	Separation of c	oils = radius of coils for uniform field	
		ount rate (and not just count)	
	Calibrate Hall p	onductor slice is perpendicular to field lines	
	Detail of calibra		
	Collimation idea	as	
		d points. Any two, one mark each.	
	B1 = B2 = B3 =	0 if lead or aluminium plate is placed in front of the source. Allow thin	

10 marks in total.

June 2004

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/06

PHYSICS Paper 6 (Options (A2)) www.PapaCambridge.com

Page 1	Mark Scheme	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	2 06

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

SapaCambridge.com B marks: These are awarded as independent marks, which do not depend on other marks. For mark to be scored, the point to which it refers must be seen specifically in the candidate's answer

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	2 06

Option A – Astrophysics and Cosmology

1	(a)	In an infinite and static Universe every line of sight should end on a star (or spherical shells argument) so sky at night should be bright		M1 A1	Mbridg
	(b)	For expanding Universe finite age limits size (1) light from distant galaxies is red-shifted out of visible light from distant young stars not yet reached Earth Any two points, maximum 2 (1)		B2	[2]
2	(a)	1 pc = 3.26 ly (allow 3.3 ly) distance = 16/3.26 = 4.9 pc	Total	C1 A1	[5] [2]
	(b)	base line is 2 AU angle = 2 x 1/4.9 = 0.41 arc sec		C1 B1	[2]
3	(a)	Universe is same everywhere/homogeneous/isotropic when considered on a sufficiently large scale	Total	M1 A1	[4] [2]
	(b)	characteristic of (black body) 3 K radiation CMB is highly isotropic/same from all directions This indicates that the Universe is highly uniform	Total	B1 M1 A1	[3]
4	(a)	e.g. planet observed by reflected light this is too faint (against the starlight) e.g. physically too small to be resolved (at such great distances) (any sensible suggestion (B1) with some further comment (B1) – I		B1 B1 B1 B1	[5] [4]
	(b)	e.g. change in intensity of starlight as the star is eclipsed e.g. wobble in position of star (M1) as planet orbits star (A1) (any sensible suggestion plus some further comment – max 2)		M1 A2	[2]
Opt	tion F – The P	hysics of Fluids	Total		[6]
5	(a)	force = upthrust – weight of polystyrene in air $25 = V \times (1000 - 15) \times 9.8$ $V = 2.6 \times 10^{-3} \text{ m}^3$		C1 C1 A1	[3]
	(b)	boat will tend to right itself/float higher in the water if at positions B	Total	M1 A1	[2] [5]
6	(a)	if air is streamline air above car moves faster than air below so (by Bernoulli) pressure above is lower than below and car experiences an upward force	Iotai	B1 M1 M1 A1	[4]
	(b)	the spoiler causes turbulence turbulence prevents the lift force from developing	Total	M1 A1	[2] [6]

	Page 3		Mark Scheme A/AS LEVEL EXAMINATIONS - JUNE 2004	The .	06	
				.0	8	
			lines closer near top and bottom of sphere	MM Po	S.C.	1
	(b)	(i)	force on particle = $4/3 \pi r^3 (\rho - \rho_w)g$	`	1.	36.
			= $4/3 \times \pi \times (4.5 \times 10^{-7})^3 \times (2.9 \times 10^3) \times 9.8$ = $1.08(5) \times 10^{-14} N$			9
			$= 1.08(5) \times 10^{-17} \text{ N}$		C1	
			1.085 x 10^{-14} = 6 x π x (4.5×10^{-7}) x 9.5 x 10^{-4} x v v = 1.35 x 10^{-6} m s ⁻¹		Δ1	Γ Δ 1
		(ii)	in 1.0 hours, particles move 1.35 x 10-6 x 3600 (= 4.85 x 10 ⁻³ m)		B1	[-1
		` ,	fraction = $(8.0 - 4.85)/8.0$		C1	
			= 0.39		A1	[3]
			(allow 2/3 for answer of 0.61)	Total		[9]
tio	n M –	Medica	l Physics	. • • • •		[~]
	(a)		piezo-electric/quartz crystal		В1	
	(ω)		across which is applied an <u>alternating</u> voltage		B1	
			crystal vibrates		B1	
			at its resonant frequency		B1	[4]
	(b)	(i)	trace length = 4.0 mm		C1	
	ν-,	\-/	distance = speed x time = 1450 x 0.4 x 10 x 10 ⁻⁶			
			$= 5.8 \times 10^{-3} \text{ m}$		C1	
		(ii)	thickness = 0.29 cm trace length = 5.2 cm		A1 C1	[3]
		(11)	thickness = 4.1 cm		A1	[2]
				Total		[9]
	(a)		ability of eye to form focused images		M1	
			of objects at different distances from the eye		A1	[2]
	(b)	(i)	25 cm (allow \pm 5 cm) to infinity		В1	[1]
		(ii)	(for close-up vision), power = $1/0.25 - 1/1.2$		C1	
			= 3.17 D (for distance vision), power = -0.25D		A1 A1	[3]
		(iii)	use bifocal lenses		B1	[0]
		` ,	further detail e.g. region of lens identified		B1	[2]
			loss of hearing at higher frequencies	Total	В1	[8]
0			loss of rearing at higher frequencies		В1	
			further comment on either e.g. upper limit should be about 15 kHz,			
			at 3 kHz, I.L. should be about 10 dB (or	•	B1	[3]
pt	ion P -	- Enviro	onmental Physics	Total		[3]
			•			
1	(a)	(i)	Sun's energy incident per unit time per unit area on the cross-sectional area of the Earth		M1 A1	[2]
		(ii)			C1	[4]
		` ,	solar constant = $(3.9 \times 10^{26})/(4\pi \times \{1.5 \times 10^{11}\}^2)$ = 1380 W m ⁻²		A1	[2]
	(b)		at C, greater thickness of atmosphere so more absorption		B1	
	(10)		also larger area (for beam of a particular width)		B1	
			explanation of 'larger area' (e.g. diagram or $1/\cos\theta$, with θ clear)		В1	[3]
	(-)		o a doily variations as industry anana un/alasas dave	Total		[7]
2	(a)		e.g. daily variations as industry opens up/closes down daily variations with TV programmes, cooking meals, lighting			
			seasonal variations with heating/AC, length of day (any reasonable response, 1 for daily, 1 for seasonal plus 1 more)			
			1 each, max 3		ВЗ	[3]
						£ - J
	(b)		power demand may change suddenly		B1	
			pumped water scheme can be brought onto full load in a short time can use surplus energy at times of low demand to pump water 'bac		B1 B1	[3]
			can accomplace chargy at times of low demand to pump water bac	up	יכ	[2]

F^1

<u> </u>					.0		
					20.	000	1
13	(a)	(i)	work done	$= \rho \Delta V$		0	B
				$= 55 \times 10^{5} \times (150 - 40) \times 10^{-6}$ $= 605 \text{ J}$		AO	Orio
		(ii)	energy wasted	= (2500 + 400) – (1020 + 605) = 1275 J		A1	13
		(iii)	efficiency	= 1625/2900 = 0.56 or 56%		C1 A1	[5]
	(b)		similarity: e.g.	compression/expansion are both adiabatic		B1	
	(-)			in petrol engine, energy input at constant volume	Total	B1	[2]
					Total		[7]
Opti	ion T -	Teleco	mmunications				
14	(a)		10 $\lg(P_1/P_2)$ or	10 $\lg(P_2/P_1)$		B1	[1]
	(b)		10 lg(25.4/1.0) =			A1	
			above the refere	nce level		A1	[2]
	(c)	(i)	loss of signal pov	wer/energy		B1	
		(ii)	length = 14/3.2 = 4.4 km			C1 A1	[3]
15	(2)		amplitude of the	carrier wave varies	Total	M1	[6]
13	(a)			n the displacement of the information signal		A1	[2]
	(b)	(i)	broadcast freque	ency = 50 kHz		C1	
			broadcast freque 3.0 x 10 ⁸ = 50 x	$10^3 \times \lambda$		C1	
		(ii)	$\lambda = 6000 \text{ m}$ bandwidth = 7.0	kHz		A1 A1	
		(iii)	maximum freque		Total	A1	[5]
16	(a)		period (or orbit) i	s 24 hours	TOLAT	В1	[7]
			equatorial (orbit)	rom west to east		B1 B1	[3]
			,			וט	[2]
	(b)	(i) (ii)	allow 2 GHz → 4	0 GHz og of the (low power) signal received from Earth		B1 B1	[2]
		(,				٥.	r-1
	(c)		advantage: e.g.	fewer satellites required aerials point is fixed direction/no tracking requ	ired		
			Parado anto a	(any sensible suggestion, 1 mark)		B1	
			disadvantage: e.	 g. noticeable time delay in messages reception difficult at Poles 			
				(any sensible suggestion, 1 mark)	Total	B1	[2]
					Total		[7]

Mark Scheme
A/AS LEVEL EXAMINATIONS - JUNE 2004

Page 4

Paper 06