UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary and Advanced Level

MARK SCHEME for the November 2004 question paper

9702 PHYSICS

9702/02

Paper 2 (Structured), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

www.PapaCambridge.com

www.Papacambridge.com

Grade thresholds taken for Syllabus 9702 (Physics) in the November 2004 examination

	maximum	minimum mark required for grade:				
	mark available	А	В	Е		
Component 2	60	41	37	25		

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

www.PapaCambridge.com

November 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02

PHYSICS
Paper 2 (Structured)

	Page 1	Mark Scheme	Sylia	0	er
	i age i	A and AS LEVEL – NOVEMBER 2004	9702	800	1
1	(a) (i) e.g. ch	neck for zero error (on micrometer)/zero the micrometer	•	Y	Canno
	(ii) take re	eadings along the length of the wire/at different points		В1	1
	(iii) take re	eadings spirally/around the wire		В1	[3]
	(b) (i) 4%			A 1	
	(ii) 8%			A1	[2]
2	(a) all same s	speed in a vacuum (allow medium)/all travel in a vacuum	(1)		
	transverse	e/can be polarised	(1)		
	undergo c	diffraction/interference/superposition	(1)		
	can be re	flected/refracted	(1)		
	show prop	perties of particles	(1)		
	oscillating	electric and magnetic fields	(1)		
	transfer e	nergy/progressive	(1)		
	not affecte	ed by electric and magnetic fields	(1)		
	(allow any	/ three, 1 each)		В3	[3]
	(b) 495 nm =	495 x 10 ⁻⁹ m		C1	
	number =	$1/(495 \times 10^{-9}) = 2.02 \times 10^{6}$		A 1	[2]
	(allow 2 o	r more significant figures)			
	(c) (i) allow	$10^{-7} \rightarrow 10^{-11} \text{ m}$		В1	
	(ii) allow	$10^{-3} \rightarrow 10^{-6} \text{ m}$		В1	[2]
3	(a) constant (gradient/straight line		В1	[1]
	(b) (i) 1.2 s			A1	
	(ii) 4.4 s			A 1	[2]
	(c) either use	e of area under line or h = average speed x time		C1	
	h = 1	½ x (4.4 – 1.2) x 32		C1	

(allow 2/3 marks for determination of h = 44 m or h =58.4 m allow 1/3 marks for answer 7.2 m)

A1 [3]

= 51.2 m

Page 2	Mark Scheme	Sylla
	A and AS LEVEL – NOVEMBER 2004	9702

(d)
$$\Delta p = m\Delta v OR p = mv$$

$$= 0.25 \times (28 + 12)$$

C1

$$= 10 N s$$

A1 [3]

(answer 4 N s scores 2/3 marks)

B1

B1 [2]

B1

B1

В1

(B1)

causes change in momentum/law does not apply here (B1) [3]

B1 [1]

(b)
$$v = f \lambda$$

C1

speed =
$$540 \text{ m s}^{-1}$$

A1 [2]

B1

wave is formed by superposition of (two travelling) waves

B1

this quantity is the speed of the travelling wave

B1 [3]

B1

B1

B1 [3]

(b) (i)
$$\Delta L = 0.012 \times 0.62 \times 350$$

M2

$$= 2.6 \, \text{mm}$$

A0 [2]

(ii)
$$2.0 \times 10^{11} = (F \times 0.62)/(7.9 \times 10^{-7} \times 2.6 \times 10^{-3})$$

C1

A1 [2]

Page 3		Mark Scheme A and AS LEVEL – NOVEMBER 2004			Sylic	S.	Cannb		
							9702	Sol	3
		(iii)	either	stress w	hen cold = 660/(7.9	9 x 10 ⁻⁷) = 840 MPa			MA
			or	tension a	at uts = 198 N			M1	
			either	this is gr	reater than the ultim	nate tensile stress			
			or	tension a	at uts is less then to	ension in (ii)		A 1	
			the wir	re will sna	ар			A 1	[3]
			(Allow possibility for the two 'A' marks to be scored as long as some quantita answer – even if incorrect – has been given for the 'M' mark)						⁄e
6	(a)	(i)	resista	ınce is rat	tio <i>V/I</i> (at a point)			В1	
			either	gradient i	increases or I increa	ases more rapidly than V		В1	[2]
			(If stat	es R = re	ciprocal of gradient	, then 0/2 marks here)			
		(ii)	curren	t = 2.00 n	mA			C1	
			resista	nce = 2 0	000 Ω			A 1	[2]
	(b)	(i)	straigh	nt line fron	m origin			М1	
			passin	g through	n (6.0 V, 4.0 mA)	(allow 1/2 square tolerance)		A 1	[2]
		(ii)	individ	ual currer	nts are 0.75 mA and	d 1/33 mA		C1	
			curren	t in batter	ry = 2.1 mA			A 1	[2]
			(allow	argumen	t in terms of $P = I^2 F$	R or IV)			
	(c) same curr		ent in R a	and in C			М1		
		p.d	. acros	s C is larç	ger than that across	s R		М1	
		so	since p	ower = V	/I, greater in C			A 1	[3]
		(ali	low arg	ument in t	terms of $P = I^2R$ or	IV)			
7	(a)	(i)	nucleu	ıs is small	I			М1	
			in com	iparison to	o size of atom			A 1	[2]
		(ii)	nucleu	ıs is mass	sive/heavy/dense			В1	
			and ch	narged	(allow to be score	d in (i) or (ii))		В1	[2]
	(b)	(i)	symme	etrical pat	th and deviation co	rect w.r.t. position of nucleu	S	В1	
			deviati	on less th	nan in path AB			В1	

B1 [3]

(ii) deviation > 90° and in correct direction