DNAL EXAMINATIONS vanced Level 9702/04	Name	Candidate Number	Centre Number
ONAL EXAMINATIONS	-	SITY OF CAMBRIDG General Certificate o	
9702/04			PHYSICS
October/November 2004	C		Paper 4
	C		
1 hour	er.	wer on the Question Pape laterials are required.	
		CTIONS FIRST	EAD THESE INSTRUC
tion Paper.	I name on all the worl rided on the Question hs or rough working.	cil for any diagrams, grap	
tion Paper. ng. I. estion or part question.	vided on the Question hs or rough working. or correction fluid. he end of each question		ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is
tion Paper. ng. I. estion or part question.	vided on the Question hs or rough working. or correction fluid. he end of each question	cil for any diagrams, grap er clips, highlighters, glue given in brackets [] at th	ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is
tion Paper. ng. l. estion or part question. ot use appropriate units.	vided on the Question hs or rough working. or correction fluid. he end of each question	cil for any diagrams, grap er clips, highlighters, glue given in brackets [] at th	ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is
tion Paper. ng. l. estion or part question. ot use appropriate units. For Examiner's Use	vided on the Question hs or rough working. or correction fluid. he end of each question	cil for any diagrams, grap er clips, highlighters, glue given in brackets [] at th	ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is
tion Paper. ng. I. estion or part question. of use appropriate units. For Examiner's Use	vided on the Question hs or rough working. or correction fluid. he end of each question	cil for any diagrams, grap er clips, highlighters, glue given in brackets [] at th	ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is
tion Paper. ng. I. estion or part question. of use appropriate units. For Examiner's Use 1 2	vided on the Question hs or rough working. or correction fluid. he end of each question	cil for any diagrams, grap er clips, highlighters, glue given in brackets [] at th you do not show your work	ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is ou may lose marks if yo
tion Paper. ng. I. estion or part question. bt use appropriate units. For Examiner's Use 1 2 3	vided on the Question hs or rough working. or correction fluid. he end of each question	cil for any diagrams, grap er clips, highlighters, glue given in brackets [] at th ou do not show your work a label, look at the incorrect or	ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is ou may lose marks if yo u may lose marks if yo
tion Paper. ng. I. estion or part question. bt use appropriate units. For Examiner's Use 1 2 3 4	vided on the Question hs or rough working. or correction fluid. he end of each question	a label, look at the cincorrect or ur correct details	ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is ou may lose marks if yo
tion Paper. ng. I. estion or part question. bt use appropriate units. For Examiner's Use 1 2 3 4 5	vided on the Question hs or rough working. or correction fluid. he end of each question	a label, look at the incorrect or ur correct details a top of this page.	ou may use a soft pend o not use staples, pape nswer all questions. he number of marks is ou may lose marks if yo ou may lose marks if yo you have been given a stails. If any details are issing, please fill in you

Data

speed of light in free space,	$c = 3.00 \times 10^8 \text{ m s}^{-1}$
permeability of free space,	$\mu_0 = 4\pi imes 10^{-7} \mathrm{H m^{-1}}$
permittivity of free space,	$\epsilon_{0} = 8.85 \times 10^{-12} \ \mathrm{F} \mathrm{m}^{-1}$
elementary charge,	$e = 1.60 \times 10^{-19} \text{ C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{Js}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} {\rm kg}$
rest mass of proton,	$m_{ m p} = 1.67 imes 10^{-27} { m kg}$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant,	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

uniformly accelerated motion,	$s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$
work done on/by a gas,	$W = p \Delta V$
gravitational potential,	$\phi = -\frac{Gm}{r}$
simple harmonic motion,	$a = -\omega^2 x$
velocity of particle in s.h.m.,	$v = v_0 \cos \omega t$ $v = \pm \omega \sqrt{(x_0^2 - x^2)}$
resistors in series,	$R = R_1 + R_2 + \dots$
resistors in parallel,	$1/R = 1/R_1 + 1/R_2 + \dots$
electric potential,	$V = \frac{Q}{4\pi\epsilon_0 r}$
capacitors in series,	$1/C = 1/C_1 + 1/C_2 + \dots$
capacitors in parallel,	$C = C_1 + C_2 + \dots$
energy of charged capacitor,	$W = \frac{1}{2} QV$
alternating current/voltage,	$x = x_0 \sin \omega t$
hydrostatic pressure,	$p = \rho g h$
pressure of an ideal gas,	$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$
radioactive decay,	$x = x_0 \exp(-\lambda t)$
decay constant,	$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$
critical density of matter in the Univers	se, $\rho_0 = \frac{3H_0^2}{8\pi G}$
equation of continuity,	Av = constant
Bernoulli equation (simplified),	$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$
Stokes' law,	$F = Ar\eta v$
Reynolds' number,	$R_{\rm e} = \frac{\rho v r}{\eta}$
drag force in turbulent flow	$F = Rr^2 ov^2$

Answer all the questions in the spaces provided.

- www.papacambridge.com 1 A particle is following a circular path and is observed to have an angular displacement of 10.3°.
 - (a) Express this angle in radians (rad). Show your working and give your answer to three significant figures.

angle =rad [2]

(b) (i) Determine tan10.3° to three significant figures.

tan10.3° =

(ii) Hence calculate the percentage error that is made when the angle 10.3°, as measured in radians, is assumed to be equal to tan10.3°.

percentage error =

[3]

An α -particle (⁴₂He) is moving directly towards a stationary gold nucleus (¹⁹⁷₇₀Au). 2

www.papaCambridge.com The α -particle and the gold nucleus may be considered to be solid spheres with the charge and mass concentrated at the centre of each sphere.

When the two spheres are just touching, the separation of their centres is 9.6×10^{-15} m.

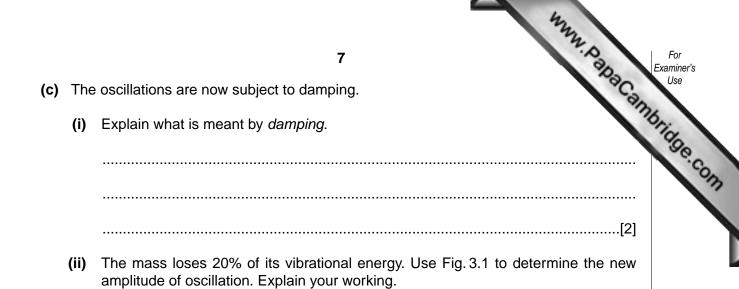
- (a) The α -particle and the gold nucleus may be assumed to be an isolated system. Calculate, for the α -particle just in contact with the gold nucleus,
 - (i) its gravitational potential energy,

gravitational potential energy = J [3]

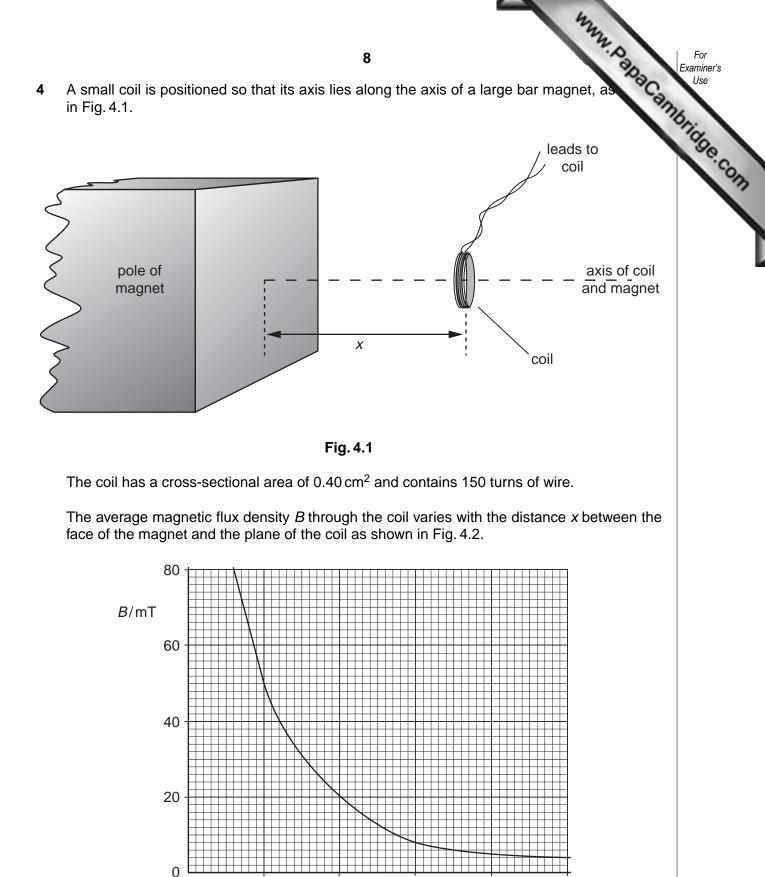
(ii) its electric potential energy.

electric potential energy = J [3]

(b) Using your answers in (a), suggest why, when making calculations based on an α -particle scattering experiment, gravitational effects are not considered.


.....[1]

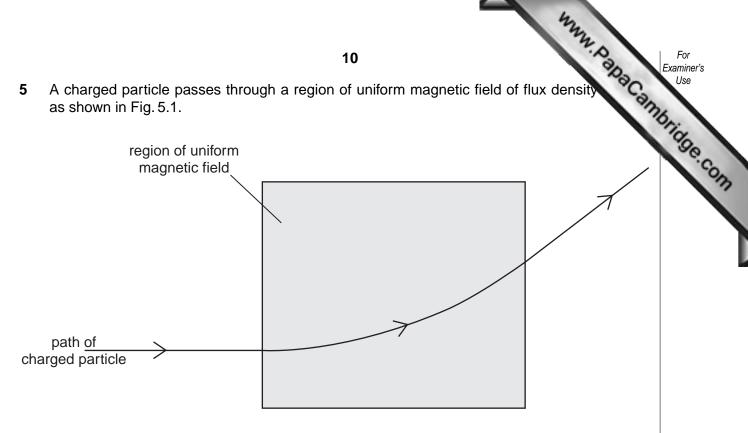
(c) In the α -particle scattering experiment conducted in 1913, the maximum kinetic energy of the available α -particles was about 6 MeV. Suggest why, in this experiment, the radius of the target nucleus could not be determined.


.....[2]

www.papacambridge.com 6 3 The vibrations of a mass of 150 g are simple harmonic. Fig. 3.1 shows the variate displacement x of the kinetic energy E_k of the mass. m -2 2 -6 -4 0 4 6 x/cm Fig. 3.1 (a) On Fig. 3.1, draw lines to represent the variation with displacement x of the potential energy of the vibrating mass (label this line P), (i) the total energy of the vibrations (label this line T). (ii) [2] (b) Calculate the angular frequency of the vibrations of the mass.

angular frequency = rad s^{-1} [3]

amplitude = cm [2]


(a) (i) The coil is 5.0 cm from the face of the magnet. Use Fig. 4.2 to determine the magnetic flux density in the coil.

magnetic flux density = T

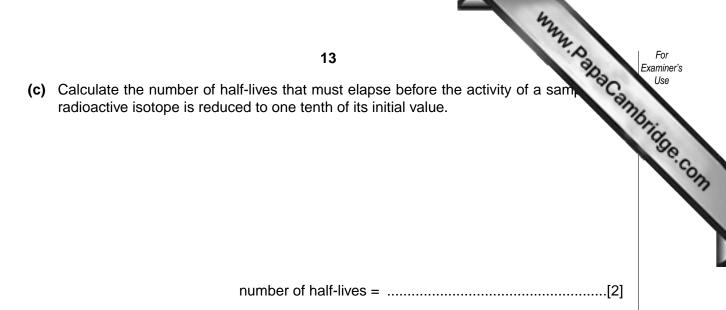
x/cm

(b)	9 (ii) Hence show that the magnetic flux linkage of the coil is 3.0 x 10 ⁻⁴ Wb. [3] State Faraday's law of electromagnetic induction.	For Examiner's Use
	[2]	
(c)	The coil is moved along the axis of the magnet so that the distance x changes from $x = 5.0$ cm to $x = 15.0$ cm in a time of 0.30 s. Calculate	
	(i) the change in flux linkage of the coil,	
	change = Wb [2] (ii) the average e.m.f. induced in the coil.	
	e.m.f. = V [2]	
(d)	State and explain the variation, if any, of the speed of the coil so that the induced e.m.f. remains constant during the movement in (c) .	
	[3]	

5 A charged particle passes through a region of uniform magnetic field of flux density as shown in Fig. 5.1.

The radius *r* of the path of the particle in the magnetic field is 23 cm.

- (a) The particle is positively charged. State the direction of the magnetic field.
 -[1]
- Show that the specific charge of the particle (the ratio $\frac{q}{m}$ of its charge to its mass) is given by the expression (b) (i)


$$\frac{q}{m} = \frac{v}{rB},$$

where v is the speed of the particle and B is the flux density of the field.

[2]

www.papacambridge.com 11 (ii) The speed v of the particle is 8.2 x 10^6 m s⁻¹. Calculate the specific charge particle. specific charge = $\dots C kg^{-1}$ [2] The particle in (b) has charge 1.6×10^{-19} C. Using your answer to (b)(ii), determine (c) (i) the mass of the particle in terms of the unified atomic mass constant u. mass = *u* [2] The particle is the nucleus of an atom. Suggest the composition of this nucleus. (ii)[1]

		44	
		12	Fo Examii
		12topes Radium-224 ($^{224}_{88}$ Ra) and Radium-226 ($^{226}_{88}$ Ra) both undergo spontae decay. The energy of the α-particles emitted from Radium-224 is 5.68 MeVdium-226, 4.78 MeV.State what is meant by the <i>decay constant</i> of a radioactive nucleus.	rid
(a)	(i)	State what is meant by the <i>decay constant</i> of a radioactive nucleus.	2
	(ii)	Suggest, with a reason, which of the two isotopes has the larger decay constant.	
		[3]	
(b)	Rad	lium-224 has a half-life of 3.6 days.	
	(i)	Calculate the decay constant of Radium-224, stating the unit in which it is measured.	
		decay constant =[2]	
	(ii)	Determine the activity of a sample of Radium-224 of mass 2.24 mg .	
		activity = Bq [4]	

www.papaCambridge.com 7 The e.m.f. generated in a thermocouple thermometer may be used for the measure temperature.

Fig. 7.1 shows the variation with temperature T of the e.m.f. E.

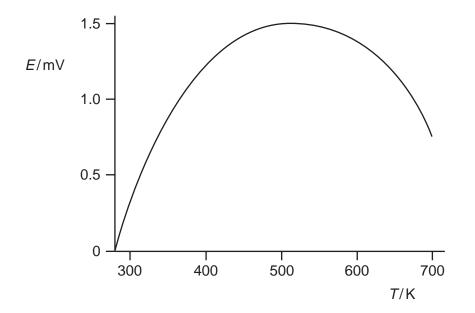


Fig. 7.1

(a) By reference to Fig. 7.1, state two disadvantages of using this thermocouple when the e.m.f. is about 1.0 mV.

1. 2.[2]

(b) An alternative to the thermocouple thermometer is the resistance thermometer.

State two advantages that a thermocouple thermometer has over a resistance thermometer.

1. 2.[2]

BLANK PAGE

BLANK PAGE

16

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of