www.papaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary and Advanced Level

MARK SCHEME for the June 2005 question paper

9702 PHYSICS

9702/06

Paper 6, maximum mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.PapaCambridge.com

Grade thresholds for Syllabus 9702 (Physics) in the June 2005 examination.

	maximum	minimum mark required for grade:		
	mark available	А	В	E
Component 6	40	26	23	14

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

www.PapaCambridge.com

June 2005

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/06

PHYSICS Paper 6

Page 1	Mark Scheme	Paper
	GCE A/AS LEVEL – JUNE 2005	9 %

Option A - Astrophysics and Cosmology

1	(a)	position: on a spiral arm, between ½ and ¾ distance from centre	B1	Je. C
	(b)	(i) allow 80 000 \rightarrow 150 000 light-years (ii) allow 2 \rightarrow 10 light-years	B1 B1	[2]
	(c)	allow $10^7 \rightarrow 10^9$	B1	[1]
2	(a)	allow $10^8 \rightarrow 10^{10} \mathrm{K}$	B1	[1]
	(b)	position marked between 10 ¹² s and 10 ¹³ s	B1	[1]
	(c)	result of X-bosons (allow 'bosons') at (very) early stages of development of the Universe (X-) boson decays into quarks (slightly) more slowly than its antiparticle decays	B1 B1 M1 A1	[4]
3	(a)	(i) $H_0 = (60 \times 10^3)/(3.1 \times 10^{16} \times 10^6)$ = 1.9×10^{-18} (s ⁻¹) age of Universe = $1/H_0$ (or clear substitution for H ₀ shown) = 5.2×10^{17} s = 1.6×10^{10} years	C1 C1 B1 C1 A1	[5]
		 (ii) fraction of time = (12600 × 10⁶)/(1.6 × 10¹⁰) = 0.79 or 63/80 (iii) light left galaxy when Universe was much younger (so) 'looking back' in time 	A1 B1 B1	[1] [2]
	(b)	limit set by how far light can travel during the lifetime of the Universe or galaxies at very large distances are moving very fast so Doppler shifted out of visible	M1 A1	[2]
Op	otion	F - The Physics of Fluids		
4	(a)	pressure <u>difference</u> (between upper and lower surfaces) allow 'upthrust provided by <u>displaced fluid</u> '	B1	[1]
	(b)	(i) mass = density × volume = $920 \times 6.4 \times 10^4 \times (28 + d)$ (ii) either $920 \times 6.4 \times 10^4 \times (28 + d)$ or $1030 \times 6.4 \times 10^4 \times d$	C1 A1	[2] [1]
	(c)	(i) $920 \times 6.4 \times 10^4 \times (28 + d) = 1030 \times 6.4 \times 10^4 \times d$ d = 234 m (ii) fraction = $234/(234 + 28)$	C1 A1	[2]
		= 0.89	A 1	[1]

		2
Page 2	Mark Scheme	Paper
_	GCE A/AS LEVEL – JUNE 2005	9 %
		90

5	(a)	fluid in which there is internal friction either resisting motion of an object through the fluid or resisting movement between layers of fluid	Cannon.	ide
	(b)	there is no single value for the speed in the pipe (do not allow unqualified 'constant') any other comment e.g. volume flow rate takes into account whole flow	B1 B1	[2]
	(c)	(i) pressure (= ρgh) = 1.0 × 10 ³ × 9.8 × 9.1 × 10 ⁻² = 890 Pa some explanation as to why this is the pressure difference (ii) 1.5 × 10 ⁻⁶ = (π × {0.9 × 10 ⁻³ } ⁴ × 890)/(8 × η × 13 × 10 ⁻²) η = 1.18 × 10 ⁻³ N s m ⁻²	M1 A0 B1 C1 A1	[2] [2]
6	(a)	 (i) path taken by a particle of the fluid (ii) each particle can follow only one path (or in terms of tangent being direction of motion, and only one direction) 	B1 B1	[1] [1]
	(b)	(in any tube of flow) Av = constant when lines converge, A becomes smaller (so) v must increase	M1 A1 B1	[3]
Ор	tion	M - Medical Physics		
7	(a)	large/uniformmagnetic field applied (to patient)(1pulseof radio-frequency waves(1Causes H-atoms in patient to resonate or vibrate at Lamour frequency(1H-atoms give off radio-frequency waves(1RF detected and processed(1to give positions of H-atoms(1non-uniform magnetic field enables(1positions of resonating atoms to be defined(1[1 each, any five]))))	[5]
	(b)	e.g. cost, portability of equipment, time taken [any sensible suggestions, 1 each, max 2]	B2	[2]
8	(a)	 (i) energy deposited in body per unit mass of (body) tissue (ii) effects depend on density of deposition of energy/ionisation some radiations cause greater density of ionisation than others 	M1 A1 B1 B1	[2] [2]
	(b)	Radiation has long-term effects any other relevant point e.g. life shortening, hereditary, cancer inducing	M1 A1	[2]
9	(a)	(i) convex/converging (ii) focal length (= 100/2.5) = 40 cm	B1 B1	[1] [1]
	(b)	 (i) long sight (hypermetropia) (ii) far point is at infinity normal nearpoint is distance 25 cm from eye 1/25 - 1/v = 1/40 v = 67 cm 	B1 B1 B1 C1	[1]
		nearpoint is 67 cm in front of the eye	A1	[4]

Page 3	Mark Scheme	Paper
	GCE A/AS LEVEL – JUNE 2005	9 %

Option P - Environmental Physics

10 ((a)	resources: total energy available/stored in Earth reserves: total energy that can be extracted (economically) reserves less than resources because some fossil fuels not		Se.C
		recoverable/too expensive	B1	[3]
	(b)	formation takes place over millions/thousands of years fossil fuels will be exhausted in much less time than this	B1 B1	[2]
11 ((a)	induction compression power EXHAUST open CLOSED CLOSED closed CLOSED CLOSED open [each column 1 mark, max 4]	В4	[4]
	(b)	(i) power is delivered (by a cylinder) on every stroke (so) smoother power output/torque(ii) improved flow of gases (in and out of cylinder) increases efficiency of engine	M1 A1 M1 A1	[2] [2]
12 ((a)	 (i) any agent/substance/waste that is detrimental to health or the environment (ii) 1 man-made: e.g. exhaust gases from cars (anything sensible) 2 natural: e.g. volcanic emissions (anything sensible) 	B1 B1 B1 B1	[2] [2]
	(b)	carbon dioxide absorbed (by plants) with release of oxygen (transpiration) replaces water vapour (in atmosphere) either increasing CO ₂ levels would cause temperature changes or anything sensible e.g. reference to biodiversity, weather patterns		
Opt	ion 1	Γ - Telecommunications		
13 ((a)	signal sampled at regular intervals signal voltage converted to a digital number transmitted as a series of groups of pulses pulses could be IR pulses in optic fibre (allow any sensible example) any other relevant physics	B1 B1 B1 B1	
		(e.g. sample at twice max frequency, use parallel to series converter)	B1	[5]
	(b)	e.g. can be regenerated to remove noise data can be added to check for/correct errors [anything sensible, 1 each, max 2]	В2	[2]
14 ((a)	(i) loss of energy/power (in the signal)(ii) unwanted (random) signal	B1 B1	[1] [1]
	(b)	(i) power/dB = $10 \lg(P_1/P_2)$ $25 = 10 \lg (P/(6.0 \times 10^{-19}))$ $P = 1.9 \times 10^{-16} \text{ W}$ (ii) allowable loss = $10 \lg(7.0 \times 10^{-3})/(1.9 \times 10^{-16})$ = 136 dB length = $136/1.7 = 80 \text{ km}$	C1 M1 A0 C1 C1 A1	[2] [3]
	(c)	signal amplifier/re-shaper at intervals along the fibre	B1	[1]

		The state of
Page 4	Mark Scheme	10
	GCE A/AS LEVEL – JUNE 2005	

 (d) (i) remains at one point above the Earth orbits Earth above the Equator period of orbit is 24 hours rotates from west to east [any two, 1 each] (ii) for satellite, time to travel (2 × 3.6 × 10⁴ km) = 0.24 s for fibre, time to travel 18000 km = 0.06 s → 0.09 s advantage: less built-in delay for conversation 	(1) (1) (1) (1) (1) B2 [2] B1 B1 B1 B1 [3]
---	---