www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the May/June 2006 question paper

9702 PHYSICS

9702/06

Paper 6

Maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 1	Mark Scheme	Sylia	er
	GCE A – May/June 2006	9702	100

				m				
F	Page	1	Mark S	cheme Sylla	8	r		
			GCE A – Ma	y/June 2006 9702	Pac			
Page 1 Mark Scheme GCE A – May/June 2006 Option A - Astrophysics and Cosmology 1 Planet: almost circular orbits all in nearly the same plane Comet: highly elliptical orbits B1 B1 B1								
1	Plan		almost circular orbits		B1	To		
			all in nearly the same plane		В1	·com		
	Con		highly elliptical orbits in many different planes		B1 B1	[4]		
2			an) density atter in the Universe		M1 A1	[2]		
	(b)	/i\	symmetrical curve below given	lino	M1			
	(b)	` '	touching given line at 'present t		A1	[2]		
			H_0 not known with any certainty		B1			
			mass of matter in the Universe extent of Universe unknown	not known	B1 B1	[3]		
			(allow 1 of the last 2 marks for p	o _o not known)				
3	1 lig	ht-ye	ear = 0.306 pc (allow	0.3 pc)	C1			
	1.3 : v = I		10 light-years = 3.98×10^3 Mpc		C1 C1			
	speed = $60 \times 3.98 \times 10^3 = 2.39 \times 10^5 \text{ km s}^{-1}$							
	ratio		= $(2.39 \times 10^5 \text{ x } 10^3)/(3.0 \times 10^8)$ = 0.8		A 1	[4]		
4	0.0	vact	expense		(M1)			
7	_		ould be spent on humanitarian a	aid	(M1) (A1)			
observations possible that cannot be made on Earth					(M1)			
	sinc	e atr	nosphere limits observations		(A1)			
	technological/scientific developments on Earth							
	greater understanding of Universe leads to 'spin off' benefits for individuals							
	Any sensible comments, 1 each to max 5					[5]		
Option F - The Physics of Fluids								
5	(a)	cons	servation of volume/mass/densit	y or incompressible	B1	[1]		
	(b)	con	servation of energy		B1	[1]		
6			ear jet is moving at speed er speed air has a lower	OR water in jet is moving at speed OR high-speed water has lower pressure	B1 B1			
		pres (bec	sure ause) air is dragged along by	OR air is drawn into water jet	B1			
			er jet outside pump) is not moving	OR loss of air reduces pressure	B1	[4]		
	(h)	•	,	·	M1			
	(b)		air/water in pump has a higher so greater pressure difference	sheen	M1 A1	[2]		

Pac	ge 2	Mark Scheme Syl		D	er
	,· -	GCE A – May/June 2006 97	702	Spo)	1
	(ii)	on change in speed of air so no change in pressure difference of the control of	eqn	Manager Manage	ant
		(allow any logical argument based on liquid causing more/less drag of			
(a	•	ldy currents have kinetic energy OR cause extra drag		M1	
		ovement of the car OR energy required to overcome drag tra energy (of eddy currents) is derived from car's fuel		A1 A1	[3
(b) (i)	power = force × speed so power = $\frac{1}{2}C_DA\rho v^2 \times v$ and A and ρ are constants		B1 B1	[2
	(ii)) $84 \times 10^3 = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1 \times v_{\text{max}}^3$ $v_{\text{max}} = 63 \text{ m s}^{-1}$		C1 A1	[2
	(iii	i) $P = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1 \times (63 + 9)^3$ P = 126 kW ratio = 126 / 84 = 1.5		C1 C1 A1	[3
otio	n M	- Medical Physics			
(a	ap ca	rernating voltage uplied across (piezo-electric) crystal uses crystal to vibrate ystal dimensions such as to give resonance (in US range)		B1 B1 B1 B1	[4
(b	•	avelength at 1 MHz is shorter greater detail is possible		B1 B1	[2
e.	_	red as a scalpel (1) rther detail: causes (explosive) vaporisation of intracellular water (1) CO ₂ laser (1) IR radiation strongly absorbed by water (1) laser beam focused to give high power density (1) no/very little bleeding (1) accurate guidance (1)			
e.		pair of retina (1) rther detail: focused laser beam onto retina (1) melts tissue and forms a weld (1) (pulsed) ruby or argon laser (1)			
	an	ny two examples: named (1) plus further detail (2)		В6	[6
(a	llow	up to two marks for each diagnostic technique)			
) (a	wł va	nimum intensity (of sound) detected nere intensity = (sound) power per unit area at a stated frequency lue is 1×10^{-12} W m ⁻² 3 kHz (allow 2 kHz \rightarrow 3 kHz)		M1 A1 B1 B1	[4

			the state of the s		
	Page	3	Mark Scheme Sylla	8	er
L			GCE A – May/June 2006 9702	Pan	
	(b)	(i)	intensity = $(0.14 \times 10^{-6})/(54 \times 10^{-6}) = 2.6 \times 10^{-3} \text{ W m}^{-2}$ $IL = 10 \text{ lg } (2.6 \times 10^{-3})/(1 \times 10^{-12})$ = 94 dB	C1 C1 A1	mbridge.com
		(ii)	comment e.g. would be perceived as being loud could cause tinnitus over a short period of time could cause deafness over a long period of time higher level than is acceptable in the workplace		On
			any appropriate comment, 1 mark	B1	[1]
Opt	tion	Р-	Environmental Physics		
11	(a)	wate at ti	mes of low usage of electrical power er pumped from low-level to high-level reservoir mes of high/sudden demand for electrical power er released to pass through turbines	B1 B1 B1 B1	[4]
	(b)	ene	etrical energy generated = $78 \times 10^6 \times 4.0 \times 3600 = 1.12 \times 10^{12} \text{ J}$ rgy to be stored = $(1.12 \times 10^{12})/0.75 = 1.5 \times 10^{12} \text{ J}$ $\times 10^{12} = \rho Vgh$ = $1.0 \times 10^3 \times V \times 9.8 \times 95$	C1 C1 C1	
		V =	$1.6\times10^6~m^3$	A1	[4]
12	(a)	(tha	it is impossible to convert all of a given amount of thermal energy into work t is) $W < Q_H$ — W) is energy rejected at temperature T_L	B1 B1 B1	[3]
	(b)	W/C	$Q_{H} = 1 - T_{L}/T_{H}$	B1	[1]
	(c)	effic	siency = 1 – 313/393 = 0.20	C1 A1	[2]
13	(a)	(i)	e.g. industry setting up people preparing to go to work starting to cook breakfast		
			(allow any two sensible suggestions, 1 each)	B2	[2]
		(ii)	e.g. change in temperature with use of heaters/air conditioning holiday or workday with more power used by industry when not on holiday	,	
			(allow any two sensible suggestions, 1 each)	B2	[2]

Page 4		1	Mark Scheme	Sylla	er
-	age	, -	GCE A – May/June 2006	9702	
	(b)		sudden increase in demand (as appliances are used)	B1	Cambride
		(11)	increased demand in the afternoon	В1	3
		(all	ow any two sensible suggestions in (i) and (ii)		
Op	tion	Т-	Telecommunications		
14	(a)		tantaneous) displacement of information signal ermines the frequency of the carrier wave	M1 A1	[2]
	(b)	(i)	12 V	B1	[1]
		(ii)	650 kHz	B1	[1]
		(iii)	550 kHz	B1	[1]
		(iv)	3000	B1	[1]
15	(a)	ana	alogue-to-digital converter (do not allow ADC)	B1	[1]
	(b)	con	trols the time at which samples are taken	B1	[1]
	(c)	ena	ables higher frequency components in signal to be 'detected'	B1	[1]
16	(a)		ctromagnetic shielding for the inner conductor braid is earthed	B1 B1	[2]
	(b)	SO I	reased bandwidth means more information can be carried more calls can be transmitted simultaneously er links are required	B1 B1 B1	[3]
17	(a)	e.g. cross-talk/cross-linking interference/picking up atmospherics/picking up man-made radiati white noise associated with vibrating atoms		n	
		(an	y two, 1 each)	B2	[2]
	(b)	(i)	number of dB = 10 lg (P_2/P_1) 35 = 10 lg $(P/{7.6 \times 10^{-6}})$ P = 0.024 W	C1 A1	[2]
		(ii)	number of dB = 10 lg (2.6/0.024) = 20.3 length = 20.3/5.8 = 3.5 km	C1 A1	[2]