MAN, DOB

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Mbridge: Com

	Page 2		Mark Scheme Syllal	bus	h r
	<u>. ~3</u>		GCE A/AS LEVEL – October/November 2008 970	2 %	
1	(a)	(i)	Q = It (allow any subject for the equation)	100	SIMB.
		(ii)	I t (allow 1 mark only if all three quoted)	bus 02 B1 B1	Tage
	(b)	(i)	base unit of I is A base unit of n is m^{-3} (not $/m^{-3}$) base unit of S is m^{2} base unit of S is S (not S) base unit of S is S (not S) base unit of S is S (not S)	В3	[3]
		(ii)	$A = m^{-3} m^2 A s (m s^{-1})^k$	M1	
		(")	e.g. for m: $0 = -3 + 2 + k$		
			<i>k</i> = 1	A1	[2]
2	(0)	/:\	12 = 200		
2	(a)	(1)	$v^2 = 2as$ $v^2 = 2 \times 0.85 \times 9.8 \times 12.8$	C1	
			$v = 14.6 \text{ m s}^{-1}$	A1	[2]
		(ii)	time = 29.3 / 14.6	C1	
		(,	= 2.0 s	A1	[2]
			(any acceleration scores 0 marks; allow 1 s.f.)		
	(b)	eith or	ner 60 km h ⁻¹ = 16.7 m s ⁻¹ 14.6 m s ⁻¹ = 53 km h ⁻¹		
		or	22.1 m s ⁻¹ = 79.6 km h^{-1}	M1	
			driving within speed limit	A1	101
		but	reaction time is too long / too slow	B1	[3]
3	(a)	moi	ment: force × <u>perpendicular</u> distance of force from pivot / axis / point	M1 A1	
		cou	uple: (magnitude of) one force × <u>perpendicular</u> distance	M1	
			between the two forces	A1	[4]
		(pe	nalise the 'perpendicular' omission once only)		
	<i>(</i> 1. \	<i>(</i> 1)	144 4.0 (40, 04) (0.5 70)	0.4	
	(b)	(1)	$W \times 4.8 = (12 \times 84) + (2.5 \times 72)$ W = 250 N (248 N)	C1 A1	[2]
			,		[4]
		(ii)	either friction at the pivot or small movement of weights	B1	[1]
4	(a)	(i)	either force = $e \times (V/d)$ or $E = V/d$	C1	
			= $1.6 \times 10^{-19} \times (250 / 7.6 \times 10^{-3})$ = 5.3×10^{-15} N	C1 A1	[3]
			- 0.0 ^ 10 IN	Δ 1	اما

or $\Delta E_{K} = Fd$ = $5.3 \times 10^{-15} \times 7.6 \times 10^{-3}$

C1 M1 A0

[2]

(ii) either $\Delta E_{K} = eV$ = $1.6 \times 10^{-19} \times 250$ = $4.0 \times 10^{-17} \text{ J}$

(allow full credit for correct working via calculation of a and v)

	Page 3			Mark Scheme	Syllabus	· 0	r
			GCE A/AS	LEVEL – October/November 2008	9702	200	
		` '	$4.0 \times v = 9$ or $v^{2} = v$ $v^{2} = v$	= $\frac{1}{2}mv^2$ $10^{-17} = \frac{1}{2} \times 9.1 \times 10^{-31} \times v^2$ $.4 \times 10^6 \text{ m s}^{-1}$ 2as and $a = F/m$ $(2 \times 5.3 \times 10^{-15} \times 7.6 \times 10^{-3})/(9.11 \times 10^{-15})$ $.4 \times 10^6 \text{ m s}^{-1}$		C1 A1	Mbridge
	(b)	(İf st	'ates ∆E _K doe	n (electric) potential difference s not depend on uniformity of field, then ated as an M mark)	1	M2	
			peed always t	,		A1	[3]
5	(a)			om / erratic / zig-zag movement es (do not allow molecules / atoms)		M1 A1	[2]
	(b)			nequal / unbalanced collision rate <u>s</u> (on rate due to) random motion of (gas) mo	•	B1 B1	[2]
	(c)	eithe or	this preve particle is	with air molecules average out ents haphazard motion more massive / heavier / has large ine cause only small movements / acceler	` ,	M1 A1	[2]
6	(a)	bend	ding / spreadir	n edge / aperture / slit /(edge of) obstac ng of wave (into geometrical shadow) oding at a boundary)	cle	M1 A1	[2]
	(b)		apparatus e. detector e.g. what is obser	microwave source & slit water / ripple tank, source & barrier screen aerial / microwave probe strobe / lamp	•	B1 B1 B1	[3]
			apparatus e.g	g. microphone & c.r.o. / ear		B1 B1	[2]

what is observed

current in circuit = E / (P + Q)

current is the same throughout the circuit

hence V = EP / (P + Q)

V/P = E/(P+Q)hence V = EP/(P+Q)

(a) either V = IP

or

[3]

[2]

В1

В1

В1

Α0

(M1)

(A1) (A0)

Page 4	Mark Scheme	Syllabus	2
	GCE A/AS LEVEL – October/November 2008	9702	100

			GCE A/A3 LEVEL - OCIODE	i/Novellibel 2006	9102	-60	
	(b) (i) (as temperature rises), resistance of (thermistor) decreases either resistance of parallel combination decreases or p.d. across $5~\mathrm{k}\Omega$ resistor / thermistor decreases p.d. across $2000~\Omega$ resistor / voltmeter reading increases					M1 A1	Morida
		(ii)	if R is the resistance of the paral either $3.6 = (2 \times 6) / (2 + R)$ or $R = 1.33 \text{ k}\Omega$ $\frac{1}{1.33} = \frac{1}{5} + \frac{1}{T}$ $T = 1.82 \text{ k}\Omega$		istor = 0.48 mA or = 1.32 mA	C1 C1 C1 A1	[4]
8	(a)	 nucleus has constant probability of decay per unit time / in a given time (allow 1 mark for 'cannot predict which nucleus will decay next') 			r next')	M1 A1	[2]
	(b)		count rate / activity decreases count rate fluctuates / is not smo	oth		B1 B1	[1] [1]
	(c)	eith or	er the (decay) curves are similar curves indicate same half-life	/ same		B1	[1]