www.papacambridge.com MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			444	
Pag	je 2	Mark Scheme Syllal GCE A/AS LEVEL – October/November 2008 970	bus to ab	×
Sectio	n A		20	and
(a)	(i)	$F = GMm / R^2$	В1	onig
	(ii)	$F = mR\omega^2$	B1	[1] Con
	(iii)	reaction force = $GMm / R^2 - mR\omega^2$ (allow e.c.f.)	B1	[1]
(b)	(i)	<i>either</i> value of <i>R</i> in expression $R\omega^2$ varies or $mR\omega^2$ no longer parallel to GMm / R^2 / normal to surface becomes smaller as object approaches a pole / is zero at pole	B1 B1	[2]
	(ii)	1. acceleration = $6.4 \times 10^6 \times (2\pi / \{8.6 \times 10^4\})^2$	C1	[2]
		2. acceleration = 0	A1	[2] [1]
(c)	e.g	. 'radius' of planet <u>varies</u> density of planet <u>not constant</u> planet spinning nearby planets / stars		
		(any sensible comments, 1 mark each, maximum 2)	B2	[2]
2 (a)	(Th at i (<i>re</i> i	ermal) energy / heat required to convert unit mass of solid to liquits normal melting point / without any change in temperature ference to 1 kg or to ice \rightarrow water scores max 1 mark)	id M1 A1	[2]
(b)	(i)	To <u>make allowance</u> for heat gains from the atmosphere	B1	[1]
	(ii)	e.g. constant rate of production of droplets from funnel constant mass of water collected per minute in beaker (any sensible suggestion, 1 mark)	B1	[1]
	(iii)	mass melted by heater in 5 minutes = $64.7 - \frac{1}{2} \times 16.6 = 56.4 \text{ g}$ $56.4 \times 10^{-3} \times L = 18$ $L = 320 \text{ kJ kg}^{-1}$ (Use of $m = 64.7$, giving $L = 278 \text{ kJ kg}^{-1}$, scores max 1 mark use of $m = 48.1$, giving $L = 374 \text{ kJ kg}^{-1}$, scores max 2 marks)	C1 C1 A1	[3]
8 (a)	aco	eleration / force (directly) proportional to displacement	M1	
	and	or acceleration & displacement in opposite directions	A1	[2]
(b)	(i)	maximum / minimum height / 8mm above cloth / 14mm below c	loth B1	[1]
	(ii)	1. $a = 11 \text{ mm}$ 2. $\omega = 2\pi f$	A1 C1	[1]
		= $2\pi \times 4.5$ = 28.3 rad s ⁻¹ (<i>do not allow 1 s.f.</i>)	A1	[2]

		m	
Page 3	Mark Scheme Syllabus	. Page	<u> </u>
(c) (i)	$v = \omega a$ = 28.3 × 11 × 10 ⁻³ = 0.31 m s ⁻¹ (<i>do not allow 1 s.f.</i>)	A1	mbridge.
(ii)	$v = \omega \sqrt{a^2 - y^2}$ y = 3 mm = 28.3 × 10 ⁻³ $\sqrt{(11^2 - 3^2)}$ = 0.30 m s ⁻¹ (allow 1 s.f.)	C1 C1 A1	[3]
(a) ∆ <i>U</i> =	q + w (allow correct word equation)	B1	[1]
(b) eithe or	 kinetic energy constant because temperature constant potential energy constant because no intermolecular forces so no change in internal energy kinetic energy and potential energy both constant (M1) so no change in internal energy (A1) reason for <i>either</i> constant k.e. <i>or</i> constant p.e. given (A1) 	M1 M1 A1	[3]
(a) char 2 × 1 2 × 1 v = 2	nge/loss in kinetic energy = change/gain in electric potential energy $\frac{1}{2}mv^2 = q^2 / 4\pi\epsilon_0 r$ $\frac{1}{2} \times 2 \times 1.67 \times 10^{-27} \times v^2$ = $(1.6 \times 10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times 1.1 \times 10^{-14})$ 2.5 × 10 ⁶ m s ⁻¹	B1 C1 M1 A0	[3]
(b) pV = ½ m ½ × T = 5	$s_{2}^{2}Nm < c^{2}$ and $pV = NkT$ $< c^{2} > = \frac{3}{2} kT$ (award 1 mark of first two if $< c^{2} > not used$) $2 \times 1.67 \times 10^{-27} \times (2.5 \times 10^{6})^{2} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$ 5×10^{8} K	C1 C1 C1 A1	[4]
(c) e.g.	this is <u>very</u> high temperature temperature found in stars (any sensible comment, 1 mark) (if T < 10 ⁶ K, should comment that too low for fusion to occur)	B1	[1]
(a) (i)	<i>either</i> prevent loss of magnetic flux <i>or</i> improves flux linkage with secondary	B1	[1]
(ii)	<u>reduces</u> eddy current (losses) <u>reduces</u> losses of energy (in core)	B1 B1	[2]
(b) (i)	(induced) e.m.f. proportional to / equal to rate of change of (magnetic) flux (linkage)	M1 A1	[2]
(ii)	changing current in primary gives rise to(1)changing flux in core(1)flux links with the secondary coil(1)changing flux in secondary coil, inducing e.m.f.(1)		

Page 4	Mark Scheme	Syllabus	2	r
	GCE A/AS LEVEL – October/November 2008	9702	Da	
	(any three 1 each to max 2)		Ca	
(c) e a	can change voltage easily / efficiently			26.
(0) 0.9	high voltage transmission reduces power losses			10
(an	/ two sensible suggestions, 1 each)		B2	
(a) e.g.	'instantaneous' emission (of electrons)			
	(max) electron energy dependent on frequency			
	(max) electron energy not dependent on intensity			
	rate of emission (of electrons) depends on intensity			
(an	/ three sensible suggestions, 1 each)		B3	[3]
(b) (i)	packet / quantum of energy		M1	10
	or electromagnetic energy / radiation		AT	۲2.
(ii)	discrete wavelengths mean photons have particular ene	rgies	M1	
	energy of photon determined by energy change of (orbit	al) electron	M1	
	so discrete energy levels		A0	[2]
(c) (i)	three energy changes shown correctly		B1	
(-) (-)	arrows 'pointing' in correct direction		B1	
	wavelengths correctly identified		B1	[3]
(ii)	chooses λ = 486 nm		C1	
	$\Delta E = hc / \lambda$		C1	
	= $(6.63 \times 10^{-34} \times 3.0 \times 10^8) / (4.86 \times 10^{-9})$			
	= 4.09×10^{-19} J (allow 2 s.f.)		A1	[3]
(0)	on (of anona) / area where			
(a) reg	rce is experienced by		DI M1	
cur	ent-carrying conductor / moving charge / permanent mac	net	A1	[3
0.01		,		19
(b) (i)	electric		B1	[1
(ii)	gravitational		B1	[1
(iii)	magnetic		B1	[1
(iv)	magnetic		B1	[1
()	5			

Pag	je 5	Mark Scheme	Syllabus	A.	r
		GCE A/AS LEVEL – October/November 2008	9702	PaC.	Y
Sectior	ו B				non:
(a)	IR has fewer	s less attenuation (per unit length) (repeater) amplifiers / longer <u>uninterrupted</u> length		B1 B1	100
(b)	either or	limited range (so) cells do not overlap (appreciably) short wavelength so convenient length aerial (on mobile phone)	(B1) (B1)	B1 B1	[2]
(c)	large l differe	bandwidth / large information carrying capacity ent so that uplink signal not swamped by downlink		B1 B1	[2]
IO (a)	(i) 1. 2.	 inverting (amplifier) gain of op-amp is very large / infinite non-inverting input is at earth / 0V for amplifier not to saturate, P must be at about ea 	rth / 0 V	B1 B1 B1 B1	[1] [3]
	(ii) in (s <i>I</i> : <i>I</i> : he	put resistance is very large so) current in R_1 = current in R_2 = $V_{\rm IN} / R_1$ = $- V_{\rm OUT} / R_2$ (minus sign can be in either of the eq ence gain = $V_{\rm OUT} / V_{\rm IN}$ = $-R_2 / R_1$	uations)	B1 B1 B1 A0	[4]
(b)	(i) 1. 2.	feedback resistance = $33.3 \text{ k}\Omega$ gain (= $33.3 / 5$) = 6.66 V_{OUT} (= 6.66×1.2) = 8.0 V (+ or – acceptable, all feedback resistance = $8.33 \text{ k}\Omega$ V_{OUT} (= { 6.66×1.2 } / 5) = 2.0 V (+ or – acceptable	low 1 s.f.) e, allow 1 s.f.)	C1 C1 A1 C1 A1	[3] [2]
	(ii) (li <u>Fo</u> vo	ncrease in lamp-LDR distance gives) decrease in int <u>eedback</u> / <u>LDR</u> resistance increases oltmeter reading increases / becomes more negative	tensity	M1 M1 A1	[3]
11 (a)	CT im any fu X-ray	age: (thin) slice (through structure) Irther detail e.g. built up from many 'slices' / 3-D ima image: 'shadow' image (of whole structure) / 2-D ima	ge age	B1 B1 B1	[3]
(b)	X-ray these repeat to buil 3-D in compu (any fi	image <u>of slice</u> taken from many different angles images are combined (and processed) ted for many different slices d up a 3-D image nage can be rotated uter required to store and process huge quantity of d ive 1 each to may 5)	(1) (1) (1) (1) (1) lata (1)	B5	[5]