UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page	e 2	Mark Scheme: Teachers' version Syllabus	er	
		GCE A/AS LEVEL – May/June 2009 9702	°C	Y
		Section A	all.	76
(a) fo	orce pe	Mark Scheme: Teachers' versionSyllabusGCE A/AS LEVEL – May/June 20099702Section Aer unit mass (ratio idea essential) M/R^2 $0.6 \times 10^{7})^2 = M \times 6.67 \times 10^{-11}$	B1	103
(b) g	q = GI	M/R^2	C1	
8 N	8.6 × (0 1/ = 4.	$0.6 \times 10^7)^2 = M \times 6.67 \times 10^{-11}$ 6 × 10 ²⁴ kg	C1 A1	[3]
(c) (i) eitl	ner potential decreases as distance from planet decreases		
	or	potential zero at infinity and X is closer to zero		
	or SO	potential $\alpha - 1/r$ and Y more negative point Y is closer to planet.	M1 A1	[2]
(i	i) ide	a of $\Delta \phi = \frac{1}{2}v^2$	C1	
``	(6.8	$3 - 5.3$ × $10^7 = \frac{1}{2}v^2$ = 5.5 × 10^3 ms^{-1}	A1	[2]
	<i>v</i> -	5.5 × 10° ms	AT	[2]
(a) e	either	the half-life of the source is <u>very</u> long		
	or	decay constant is <u>very</u> small		
	or or	half-life >> 40 days decay constant << 0.02 day ^{−1}	B1	[1]
(b) n	number	of helium atoms = $3.5 \times 10^6 \times 40 \times 24 \times 3600$ = 1.21×10^{13}	C1	
e	either p	$pV = NkT \text{ or } pV = nRT \text{ and } n = N/N_A$	C1	
		$D^5 \times V = 1.21 \times 10^{13} \times 1.38 \times 10^{-23} \times 290$ 2 × 10 ⁻¹³ m ³	A1	[3]
($T/^{\circ}C$ or $n = 1$ or $n = 4$, then 1 mark max for calculation of number of		[~]
(a) ii	ncreas	ing separation of molecules / breaking bonds between molecules	B1	
(allow a	ntoms/molecules, overcome forces)		101
U	loing <u>w</u>	<u>vork</u> against atmosphere (during expansion)	B1	[2]
(b) (i) 1	either bubbles produced at a constant rate / mass evaporates/lost at		
		<u>constant rate</u> or find mass loss more than once and this rate should be constant		
		or temperature of liquid remains constant	B1	[1]
	2	to allow/cancel out/eliminate/compensate for heat losses (to atmosphere) (do not allow 'prevent'/'stop')	B1	[1]
(i	i) use	e of power × time = mass × specific latent heat	C1	
U,	(70	$(-50) \times 5 \times 60 = (13.6 - 6.5) \times L$	C1	
	1 =	= 845 J g ⁻¹	A1	[3]

Pag	je 3	Mark Scheme: Teachers' version GCE A/AS LEVEL – May/June 2009	Syllabus 9702	r
(a) ((i) (<i>t</i>	$\theta = 0 \omega t$ (allow any subject if all terms given)	Syllabus 9702 B1	no.
(i	(ii) (S	SQ =) $r \sin \omega t$ (allow any subject if all terms given)	B1	10
		the solution of the equation $a = -\omega^2 x$ - $\omega^2 x$ is the (defining) equation of s.h.m.	M1 A1	[2]
(c) (• •	$= \omega / 2\pi$ $= 4.7 / 2\pi$	C1	
		= 0.75 Hz	A1	[2]
(i		= $r\omega$ (<i>r</i> must be identified) = 4.7 × 12	C1	
		$= 4.7 \times 12$ = 56 cm s ⁻¹	A1	[2]
(a) (• •	atio of charge (on body) and its potential to not allow reference to plates of a capacitor)	B1	[1]
(i		potential at surface of sphere =) $V = Q / 4\pi \epsilon_0 r$ $c = Q / V = 4\pi \epsilon_0 r$	M1 A0	[1]
(b) ($x = 4 \times \pi \times 8.85 \times 10^{-12} \times 0.36$		-
		= $4.0 \times 10^{-11} \text{ F}$ (allow 1 s.f.)	A1	[1]
(I	,II) Q	P = CV = 4.0 × 10 ⁻¹¹ × 7.0 × 10 ⁵ = 2.8 × 10 ⁻⁵ C	A1	[1]
	•	c is an insulator / not a conductor / has no free electrons es do not move (on an insulator)	B1 B1	
	either or	so no single value for the potential charge cannot be considered to be at centre	B1	[3]
(d) e	<i>either</i> energ	energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$ y = $\frac{1}{2} \times 4 \times 10^{-11} \times \{(7.0 \times 10^5)^2 - (2.5 \times 10^5)^2)\}$ = 8.6 J	C1 C1 A1	[3]

Page 4	Mark Scheme: Teachers' version	Syllabus A	e	r
9	GCE A/AS LEVEL – May/June 2009	9702	3	
(uniform	nagnetic flux density / magnetic field strength n) <u>field</u> normal to wire carrying current of 1 A prce (per unit length) of 1 N m ⁻¹	Syllabus 9702	A	1010s
forc	ce on magnet / balance is downwards (so by Newton ce on wire is upwards e P is a north pole	's third law)	B1 M1 A1	[3]
2.3	= <i>BIL</i> <u>and</u> <i>F</i> = <i>mg</i> (<i>g missing, then 0/3 in</i> (ii)) × 10 ⁻³ × 9.8 = <i>B</i> × 2.6 × 4.4 × 10 ⁻² (<i>g</i> = 10, loses th = 0.20 T	nis mark)	C1 C1 A1	[3]
	for maximum current = $2.3 \times \sqrt{2}$ riation = $2 \times 2.3 \times \sqrt{2}$		C1	
	= 6.5 g		A1	[2]
push <u>known</u> observe cur (induced) fie <i>either</i> stat or rev	s with meter <i>(do not allow inclusion of a cell)</i> pole into coil rent <u>direction</u> <i>(not reading)</i> eld / field from coil repels magnet tes rule to determine direction of magnetic field in co ersing magnet direction gives opposite deflection on induced current such as to oppose the change produ	meter	B1 B1 B1 B1 B1 B1	[6]
if expos photon emissio	eory predicts any frequency would give rise to emiss sure time is sufficiently long has (specific value of) energy dependent on frequen n if energy greater than threshold / work function n from surface	су	M1 A1 M1 A1	[4]
of electi	is packet/quantum of energy romagnetic radiation) energy = <i>h</i> × frequency		M1 A1 B1	[3]
waveler	article has an (associated) wavelength hgth = h / p is the momentum (of the particle)		B1 M1 A1	[3]
(a) (i) ∆N	/ Δt (ignore any sign)		B1	[1]
(ii) ∆ <i>N</i>	/ <i>N</i> (ignore any sign)		B1	[1]
$A = A_0$ 0.92 =	must decay by 8% $exp(-\ln 2 t / T_{\frac{1}{2}})$ or $A/A_0 = 1 / (2^{t/T})$ $exp(-\ln 2 \times t / 5.27)$ or $0.92 = 1 / (2^{t/5.27})$		C1 C1 C1	
= 23	634 years 30 days 2 marks for A/ $A_0 = 0.08$, answer 7010 days		A1	[4]

Pag	je 5	Mark Scheme: Teachers' version	Syllabus	e ei	ſ
		GCE A/AS LEVEL – May/June 2009	9702	Da	
		Section B		Call.	76.
• •		ne output is added to /returned to / mixed with the inpu t of phase with the input / fed to inverting input	t	oapaCan B1 B1	Tios
	25 = 1 + R = 5kΩ	+ (120 / <i>R</i>)		C1 A1	[2]
(c)	(i) –2 ∨			A1	[1]
((ii) 9∨			A1	[1]
	reflected : received / signal pro time betw (informati reflected i	Iltrasound at boundaries / boundary / detected (at surface) by transducer ocessed and displayed een transmission and receipt of pulse gives on about) depth of boundary intensity gives information as to nature of boundary <i>points, 1 each, max 4</i>)	 (1) (1) (1) (1) (1) (1) 	В4	[4]
(b)	(i) coeff	icient = $(Z_2 - Z_1)^2 / (Z_2 + Z_1)^2$ = $(6.3 - 1.7)^2 / (6.3 + 1.7)^2$ = 0.33 (unit quoted, then -1)		C1 A1	[2]
((ii) fractio	$= \exp(-23 \times 4.1 \times 10^{-2})$		C1	[0]
(i	i ii) intens (do n	= 0.39 sity = $0.33 \times 0.39^2 \times I$ = 0.050 I ot allow e.c.f. from (i) and (ii) if these answers are great	ater than 1)	A1 C1 A1	[2] [2]
(a)	·	uction in power / energy / voltage/ amplitude (of the sig		B1	[1]
(b)	(i) atten	uation = 125 × 7 = 875 dB		A1	[1]
((ii) 20 ar gain	nplifiers = $20 \times 43 = 860 dB$		A1	[1]
	overall ga	$0 \log(P_1/P_2)$ in = -15 dB / attenuation is 15 dB		C1 C1	
	–15 = 10 P = 14 m) lg(<i>P</i> / 450) \W		A1	[3]

Pa	ge 6	e 6 Mark Scheme: Teachers' version		~~ e	•
		GCE A/AS LEVEL – May/June 2009	9702	Da	
3 (a)	serial-to-	uning cct; (r.f.) amplifier; demodulator; parallel converter; DAC; (a.f.) amplifier 2 sets of 2 marks each		PapaCall. B2	abridg
		identified correctly ror or omission, deduct 1 mark)		B2	
	5 blocks	in correct order locks in correct order, allow 1 mark)		B2	[4]
(b)	signal re transferre compute	ansmits signal (to identify itself) ceived by (several) base station <u>s</u> ed to cellular exchange r selects base station with strongest signal	(1) (1) (1) (1)		
	•	a (carrier) frequency r, 1 each, max 4)	(1)	B4	[4]