UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions)

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page	2	Mark Scheme: Teachers' version Syllabus	· &	şr
		GCE AS/A LEVEL – May/June 2010 9702	Sp2	
(a) m	icromete	er/screw gauge/digital callipers	BI CO	mb
(b) (i	i) look/a	check for zero error	B1	10
(ii		several readings Ind the circumference/along the wire		[2]
cc st	onstant a raight lir	speed is zero acceleration ne motion <i>one mark each</i>)	В2	[2]
(b) (i	t = 0.4	the t^2 = $\frac{1}{2} \times 9.8 \times t^2$ 40 s allow 1 SF or greater 3 SF answer	C1 A1 A1	[3]
(ii	0.90 = t = 0.4	the travelled by end of time interval = 90 cm = $\frac{1}{2} \times 9.8 \times t^2$ 43 s allow 2 SF or greater nterval = 0.03 s	C1	[3]
		ance) means ball's speed/acceleration is less mage is shorter		[2]
(a) (i	i) force	is rate of change of momentum	B1	[1]
(ii	forces	on body A is equal in magnitude to force on body B (from A) s are in opposite directions s are of the same kind	A1	[3]
(b) (i		$= - F_{B} \dots$		[1] [1]
(i i	i) ∆p = .	$F_{\rm A} t_{\rm A} = - F_{\rm B} t_{\rm B} \dots \qquad \dots$. B1	[1]
fir	nal mom	omentum change occurs at same times for both spheres entum of sphere B is to the right ignitude 5 N s	. M1	[3]
ar ne	mplitude eighbour	ergy transfer varies along its length/nodes <u>and</u> antinodes ring points (in inter-nodal loop) vibrate in phase, etc. <i>1 mark each to max 2</i>	DO	[2]

		3MM	Papacal M1 A0 B1 B1 B1	
Paç	ge 3	Mark Scheme: Teachers' version Syllabus	2	r
		GCE AS/A LEVEL – May/June 2010 9702	No.	
/L\	(:)	$h = (220 \times 40^2)/FE0$	6	
(b)	(1)	$\lambda = (330 \times 10^2)/550$		26
			AU	1
	(ii)	node labelled at piston	B1	
	• •	antinode labelled at open end of tube	B1	
		additional node and antinode in correct positions along tube	B1	[3]
(c)	at lo	west frequency, length = $\lambda/4$	C1	
	λ =	1.8 m		
		uency = 330/1.8	C1	
	= 18	0 Hz	A1	[3]
(a)	(i)	Young modulus = stress/strain	C1	
. /	.,	data chosen using point in linear region of graph	M1	
		Young modulus = $(2.1 \times 10^8)/(1.9 \times 10^{-3})$	• /	
		= 1.1 × 10 ¹¹ Pa	A1	[3
	(ii)	This mark was removed from the assessment, owing to a power-of-ten		
	()	inconsistency in the printed question paper.		
(h)	aror	between lines represents energy/area under curve represents energy	M1	
		n rubber is stretched and then released/two areas are different	A1	
		energy seen as thermal energy/heating/difference represents energy	, (1	
		ased as heat	A1	[3
(a)	≏ith	$P \propto V^2 \text{ or } P = V^2 / R \dots$	C1	
		$action = (230^2 - 220^2)/230^2$	01	
		= 8.5 %	A1	[2
(b)	(i)	zero	A1	[1
(~)	(י)		/ \ 1	L'.
	(ii)	0.3(0)A	A1	[1]
(c)	(i)	correct plots to within ± 1 mm	B1	[1
(9)	(י)			['
	(ii)	reasonable line/curve through points giving current as 0.12A		
		allow ± 0.005A)	B1	[1
	/;;:)	V = IP	C1	
	(111)	V = IR	C1	
		$= 0.6(0) \vee$	A1	[2
				-
		it acts as a potential divider/surrent divides/surrent in AO act the server		
(ما)		it acts as a potential divider/current divides/current in AC not the same as	D 4	
(d)		ent in BC	81	
	curr	ent in BC stance between A and C not equal to resistance between C and B	B1 B1	
	curr resis	ent in BC stance between A and C not equal to resistance between C and B urrent in wire AC × R is not equal to current in wire BC × R	B1 B1 B1	[2

Pag	Page 4		Mark Scheme: Teachers' version Syllabus	llabus	· 0	er
			GCE AS/A LEVEL – May/June 2010	9702	Da	
(a)	(i)	eithei or	helium <u>nucleus</u> contains 2 protons and 2 neutrons		PapaCo B1	mbrio
	(ii)	speed	ange is a few cm in air/sheet of <u>thin</u> paper d up to 0.1 <i>c</i> es dense ionisation in air vely charged or deflected in magnetic or electric fields			
		•	two, 1 each to max 2)		B2	[2]
(b)	(i)	${}^{4}_{2}\alpha$			B1	
			r ¹ ₁ p or ¹ ₁ H		B1	[2]
	(ii)	1 ir	nitially, α -particle must have some kinetic energy		B1	[1]
	(ii)	E 1	.1 MeV = $1.1 \times 1.6 \times 10^{-13} = 1.76 \times 10^{-13} \text{ J}$ $F_{K} = \frac{1}{2}mv^{2}$ 		C1 C1 C1	
		ν	$r = 7.3 \times 10^{6} \text{ m s}^{-1}$ use of 1.67 × 10 ⁻²⁷ kg for mass is a maximum of 3/4		A1	[4]