UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the May/June 2010 guestion paper

for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9702	r
			Syllabus 9702 MA MA A1	1
		Section A		non:
		done moving <u>unit</u> mass nfinity to the point	M1 41	.8
11			AI	
(b) (t R, $\phi = 6.3 \times 10^7 \text{ J kg}^{-1}$ (allow $\pm 0.1 \times 10^7$)	B1	
		= GM / R .3 × 10 ⁷ = (6.67 × 10 ⁻¹¹ × M) / (6.4 × 10 ⁶)	C1	
		$1 = 6.0 \times 10^{24}$ kg (allow 5.95 \rightarrow 6.14)	A1	[3]
		laximum of 2/3 for any value chosen for ϕ not at R		L - J
(i		hange in potential = 2.1×10^7 J kg ⁻¹ (allow $\pm 0.1 \times 10^7$)	C1	
		pss in potential energy = gain in kinetic energy $\frac{1}{2}mv^2 = \phi m \text{ or } \frac{1}{2}mv^2 = GM / 3R$	B1 C1	
		$_{2}mv^{-} = \varphi m \text{ or } /_{2}mv^{-} = GM / 3R$ $_{2}v^{2} = 2.1 \times 10^{7}$	UT UT	
	v	= $6.5 \times 10^3 \text{ m s}^{-1}$ (allow $6.3 \rightarrow 6.6$)	A1	[4]
	(8	answer 7.9 × 10 ³ m s ⁻¹ , based on $x = 2R$, allow max 3 marks	s)	
(ii		.g. speed / velocity / acceleration would be greater	B1	
		eviates / bends from straight path any sensible ideas, 1 each, max 2)	B1	[2]
	(C	z_{i} solution adds, i call, max z_{j}		
(a) (eduction in energy (of the oscillations)	(B1)	
		eduction in amplitude / energy of oscillations ue to force (always) opposing motion / resistive forces	(B1)	[2]
		ny two of the above, max 2	(B1)	[2]
(i	i i) a	mplitude is decreasing (very) gradually / oscillations would		
•	C	ontinue (for a long time) /many oscillations	M1	
	lię	ght damping	A1	[2]
(b) ((i) fr	equency = $1/0.3$		
. , (= 3.3 Hz	A1	[1]
	а	llow points taken from time axis giving $f = 3.45$ Hz		
(i	ii) e	nergy = $\frac{1}{2}mv^2$ and $v = \omega a$	C1	
		= $\frac{1}{2} \times 0.065 \times (2\pi/0.3)^2 \times (1.5 \times 10^{-2})^2$ = 3.2 mJ	M1 A0	[2]
		- 5.2 mg	Au	[2]
(c) a	amplit	ude reduces exponentially / does not decrease linearly	M1	
		l be not be 0.7 cm	A1	[2]

	ge 3		Mark Scheme: Teachers' version Syllabus	2	
			GCE AS/A LEVEL – May/June 2010 9702	Pac	
(a)	(i)	for re	g C corresponds to (3840 – 190) / 100 Ω esistance 2300 $\Omega,$ temperature is 100 \times (2300 – 3840) / (190 – 384 perature is 42 °C	a) A1	7brie
	(ii)	eithe	er 286 K ≡ 13°C or 42°C ≡ 315 K	B1	
	()	therr	modynamic scale does not depend on the property of a substance hange in resistance (of thermistor) with temperature is non-linear	M1 A1	[3]
(b)	hea	t gair	ned by ice in melting = $0.012 \times 3.3 \times 10^5$ J = 3960 J	C1	
			by water = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$	C1	
) + را 16°	$0.012 \times 4.2 \times 10^{3} \times \theta$ = $0.095 \times 4.2 \times 10^{3} \times (28 - \theta)$ C	C1 A1	[4
	•		18°C – melted ice omitted – allow max 2 marks) θ – T) then allow max 1 mark)		
(a)	forc	e =	$q_1 q_2 / 4\pi \epsilon_0 x^2$	C1	
.,	= (5.4 ×	$(10^{-19})^2$ / $(4\pi \times 8.85 \times 10^{-12} \times \{12 \times 10^{-6}\}^2)$	C1	
	= 2	.56 ×	10 ⁻¹⁷ N	A1	[3
			at P is same as potential at Q	B1	
			$he = q \Delta V$ so zero work done	M1 A0	[2
		0.0		710	2
			int, potential is $2 \times (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 6 \times 10^{-6})$	C1	
			ential is $(6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 3 \times 10^{-6}) + (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$	10 ⁻⁶) C1	
		rgy :	$= 1.6 \times 10^{-19} \times (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$	C1	
		:	= $1.0 \times 10^{-22} \text{ J}$	A1	[4
	bloc	king	age of charge' / storage of energy of direct current		
		othin	g of electrical oscillations ng		
	(ang	/ two	, 1 mark each)	B2	[2
(b)	(i)		acitance of parallel combination = $60 \mu\text{F}$	C1	-
		total	capacitance = 20 μF	A1	[2
l	(ii)	•	across parallel combination = $\frac{1}{2} \times p.d.$ across single capacitor imum is 9V	C1 A1	I.J.
		Παλ		AI	[2
	eith	<i>er</i> er	nergy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and Q = CV	C1	
			$= \frac{1}{2} \times 4700 \times 10^{-6} \times (18^2 - 12^2)$	C1	

<u> </u>	age 4	•		yllabus	r
			GCE AS/A LEVEL – May/June 2010	9702 20	
(a)) (i)		ht line with positive gradient gh origin	yllabus 9702 M1 M1 A1	mbrio
	(ii)		num force shown at $\theta = 90^{\circ}$ force shown at $\theta = 0^{\circ}$	M1 M1	1
			nable curve with F about $\frac{1}{2}$ max at 30°	A1	[3]
(b)) (i)		on electron due to magnetic field on electron normal to magnetic field and direction of electi	B1 ron B1	[2]
	(ii)	quote	/ mention of (Fleming's) left hand rule on moves towards QR	M1 A1	[2]
(a)	eith or	th if	ne value of steady / constant voltage nat produces same power (in a resistor) as the alternating alternating voltage is squared and averaged ne r.m.s. value is the square root of this averaged value	M1 voltage A1 (M1) (A1)	[2]
(b)) (i)	220 V	,	A1	[1]
	(ii)	156 V	,	A1	[1]
	(iii)	60 Hz		A1	[1]
(c)			V _{rms} ² / R / 1500	C1	
		6 Ω		A1	[2]
(a)) (i)	numb	er = $(5.1 \times 10^{-6} \times 6.02 \times 10^{23}) / 241$ = 1.27×10^{16}	C1 A1	101
	(ii)	A = .		C1	[2]
)	5.9 ×	$10^5 = \lambda \times 1.27 \times 10^{16}$ $1.65 \times 10^{-11} \text{ s}^{-1}$	A1	[2]
	(iii)	4.65 >	$ 10^{-11} \times t_{\frac{1}{2}} = \ln 2 $ $1.49 \times 10^{10} s$	C1	
			470 years	A1	[2]

(b) sample / activity would decay appreciably whilst measurements are being made

B1 [1]

Page 5					eachers' ver		Syllab	us .	er	
			GCE A	S/A LEVEL	– May/June	e 2010	9702	Dar		
					Section B				amb	
(a)	(i)		of the outpu hase by 180				al)	MANNA Papa M A	1	100
		increas greater	luces gain es bandwidtl stability	ו						
			s distortion o, 1 mark ea	ch)				В	2	[2]
(b)	(i)		4.4 / 0.062 71					A	1	[1]
(+ 120/ <i>R</i> 7 × 10 ³ Ω					C		[2]
(-)										
(C)	for t	he amp	lifier not to sa	aturate				В	1	
	max	imum o	lifier not to sa utput is (71 > Ild be +/– 9 \	\times 95 $ imes$ 10 ⁻³ =	=) approxima	ately 6.7 V		B M A	1	[3]
	max supj	imum o	utput is (71 › Ild be +/– 9 \	\times 95 $ imes$ 10 ⁻³ =	=) approxima	ately 6.7 V		М	1 1	[3] [1]
0 (a)	max supj (i)	timum o oly shou strain g	utput is (71 › Ild be +/– 9 \	∝ 95 × 10 ⁻³ = ′		ately 6.7 V		M A	1 1 1	
0 (a)	max supj (i) (ii)	timum o oly shou strain g piezo-e uit: coi	utput is (71 → Ild be +/– 9 \ auge lectric / quar	: 95 × 10 ⁻³ = / tz crystal / tr nected betw	ansducer veen sensing	g circuit outp	ut and earth	M A B B	1 1 1 1	[1]
0 (a)	max supj (i) (ii)	strain g piezo-e uit: coi sw dio	utput is (71 › Ild be +/– 9 \ auge lectric / quar	tz crystal / tr nected betw rminals of e vith coil with	ansducer reen sensing xternal circu	g circuit outp		M A B B	1 1 1 1 1 1	[1]
0 (a) (b) 1 eithe	max sup) (i) (ii) circu	strain g piezo-e uit: coi sw dio sec uartz o	utput is (71 > Id be +/- 9 \ auge lectric / quar of relay con tch across te de in series v cond diode w	tz crystal / tr tz crystal / tr nected betw rminals of e vith coil with ith correct po ric crystal	ransducer reen sensing xternal circu correct pola olarity	g circuit outp lit arity for diod	e	M A B B B B B B B B	1 1 1 1 1 1 1	[1]
0 (a) (b) 1 eithe oppo eithe or	max sup) (i) (ii) circu circu er q osite er m ce	strain g piezo-e uit: coi sw dio sec uartz o faces / olecula entres o	utput is (71 > Id be +/- 9 \ auge lectric / quar of relay con tch across te de in series v cond diode w r piezo-elect two sides cos r structure in f (+) and (-)	tz crystal / tr tz crystal / tr nected betw rminals of e vith coil with ith correct pe ric crystal ated (with sil dicated charge not c	ansducer veen sensing xternal circu correct pola olarity lver) to act a coincident	g circuit outp lit arity for diod	e	M A B B B B B B B B B B B B B B B B B B	1 1 1 1 1 1 1 1	[1]
0 (a) (b) 1 <i>eithe</i> oppo <i>eithe</i> or pote alter	max supp (i) (ii) circu err q osite er m ce ential rnatil	strain g piezo-e uit: coi sw dio sec uartz o faces / olecula entres o differei ng volta	utput is (71 > Id be +/- 9 \ auge lectric / quar tch across te de in series v cond diode w r piezo-elect two sides coar r structure in	tz crystal / tr nected betw rminals of e with coil with ith correct pe ric crystal ated (with sil dicated charge not c ystal causes quency rang	ransducer reen sensing xternal circu correct pola olarity lver) to act a coincident s crystal to c	g circuit outp lit arity for diode ls electrodes change shap	e	M A B B B B B B B B B B B B B B B B B B	1 1 1 1 1 1 1 1 1 1	[1]

					MAN .		
	Page 6			Mark Scheme: Teachers' version	Syllabus S	er	
				GCE AS/A LEVEL – May/June 2010	9702	2	
12	(a)			comes distorted / noisy es power / energy / intensity / is attenuated		Can	bridge.co
	(b)	(i)	eithe or	 numbers involved are smaller / more manageable / calculations involve addition & subtraction rather that 	Sover wider range		1
		(ii)	minin	10 lg(P_{min} / (6.1 × 10 ⁻¹⁹)) num signal power = 1.93 × 10 ⁻¹⁶ W l loss = 10 lg(6.5 × 10 ⁻³)/(1.93 × 10 ⁻¹⁶)		C1 C1	1
			Ū	= 135 dB num cable length = 135 / 1.6 = 85 km so no repeaters necessary		C1 C1 A1	[5]