UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		42	42
	Page 2	Mark Scheme: Teachers' version Syllabus	P. er
	•	GCE A LEVEL – October/November 2010 9702	No.
1	(a) (i) sc ve (ii) 1. 2. 3.	alar quantity has magnitude (allow size) ector quantity has magnitude and direction temperature: scalar acceleration: vector resistance: scalar	B1 [1] B1 [1]
	(b) either	triangle / parallelogram with correct shape tension = 14 .3 N (<i>allow</i> ± 0.5 N)	C1 A2 [3]
	or R T or T or T or R lea	$(if > \pm 0.5 N but \le \pm 1 N, allow 1 mark)$ = 25 cos 35° = R tan 35° = 14.3 N = 25 sin 35° = 14.3 N and T resolved vertically and horizontally ading to T = 14.3 N	(C1) (C1) (A1) (C2) (A1) (C2) (A1)
2	(a) (i) V _H dis	$f_1 = 12.4 \cos 36^\circ (= 10.0 \text{ m s}^{-1})$ stance = 10.0 × 0.17 = 1.7 m	C1
	(ii) V _∨ h=	$y = 12.4 \sin 36^{\circ} (= 7.29 \mathrm{m s^{-1}})$ = 7.29 × 0.17 – ½ × 9.81 × 0.17 ² = 1.1 m	C1 C1 C1 A1 [3]
	(b) smooth smooth	h curve with ball hitting wall below original h curve showing rebound to ground with correct reflection at wall	B1 B1 [2]
3	(a) <u>point</u> a appear	it which (whole) weight (of body) (allow mass for weight) rs / seems to act (for mass need 'appears to be concentrated')	M1 A1 [2]
	(b) (i) po	int C shown at centre of rectangle ± 5 mm	B1 [1]
	(ii) ari ma	row vertically downwards, from C with arrow starting from the same argin of error as in (b)(i)	B1 [1]
	(c) (i) rea frid for	action / upwards / supporting / normal reaction force ction rce(s) at the rod	M1 M1 A1 [3]
	(ii) co all so	omes to rest with (line of action of) weight acting through rod ow C vertically below the rod o that <u>weight</u> does not have a moment about the pivot / rod	B1 B1 [2]

						434		
Р	Page 3	3	Mark Scheme: Teach GCE A LEVEL – October/	ers' versio November	n 2010	Syllabus 9702	o ano	r
a (a	a) ene (Ho her so	ergy boke's nce F $E = \frac{1}{2}$	= average force × extension = $\frac{1}{2} \times F \times x$ s law) extension proportional to (= kx $\frac{1}{2}kx^2$	applied) for	ce		B1 B1 A0	bridge.co
(b	o) (i)	corre	ect area shaded				B1	[1]
	(ii)	1.0 c E _s = (for a	cm^2 represents 1.0 mJ or correct 6.4 ± 0.2 mJ answer > ±0.2 mJ but ≤ ±0.4 mJ,	t units used then allow	d in calculat 2/3 <i>marks</i>)	ion	C1 A2	[3]
	(iii)	arrai	ngement of atoms / molecules is	changed			B1	[1]
(a	a) (i)	dista	ance (of point on wave) from rest	/ equilibriu	m position		B1	[1]
	(ii)	dista or m adja	ance moved by wave energy / wa ninimum distance between two p cent crests or troughs	avefront dur oints with th	ring one cyc ne same pha	le of the source ase or between	B1	[1]
(b	o) (i)	T = (0.60s				B1	[1]
	(ii)	$\lambda = 2$	4.0 cm				B1	[1]
	(iii)	eithe v = 6	For $v = \lambda / T$ or $v = f\lambda$ and $f = f$ $\delta.7 \mathrm{cm s}^{-1}$	1/T			C1 A1	[2]
(c	;) (i)	amp so, it	litude is decreasing t is losing power				M1 A1	[2]
	(ii)	<i>inter</i> ratio = 3.3	nsity ~ $(amplitude)^2$ = 2.0 ² / 1.1 ² 3				C1 C1 A1	[3]
(a	a) (i)	at 22 total	2.5 °C, <i>R</i> _T = 1600 Ω or 1.6 kΩ resistance = 800 Ω				C1 A1	[2]
	(ii)	eithe V = 1	er use of potential divider formula	a <i>or</i> curr V=	ent = 9 / 20	00 (4.5 mA) 800	C1	
		= 3.6	6V	= 3.	6V		A1	[2]
(b	o) (i)	total = 96	resistance = $4/5 \times 1200$				C1 A1	[2]
	(ii)	for p <i>R</i> ⊤ = temp	parallel combination, 1/960 = $1/2$ 2400 Ω / 2.4 k Ω perature = 11 °C	1600 + 1/R ₁	r		C1 A1	[2]

Page 4	Mark Scheme: Teachers' version Syllabus		er	
	GCE A LEVEL – October/November 2010	9702 23	~	
(c) e.g. only non- (<i>any two</i>	small part of scale used / small sensitivity linear sensible suggestions, 1 each, max 2)		ant	bilds
(a) (i) <u>mos</u> (allo	t α-particles were deviated through small angles w 1 mark for 'straight through' / undeviated)	E	32	[2]
(ii) sma grea	Il fraction of α -particles deviated through large angles ater than 90° (allow rebound back)	N A	VI1 41	[2]
(b) e.g. β-pa β-pa β-pa (any	articles have a range of energies articles deviated by (orbital) electrons article has (very) small mass <i>y two sensible suggestions, 1 each, max 2</i>)	E	32	[2]