UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papaCambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/23 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version GCE A LEVEL – October/November 2010	Syllabus ¹² .D 9702 ²⁰	er	
_	(a) allow 0.0	0.15 mm $\rightarrow 0.15 \text{ mm}$	3102	Can	Br.
	(b) allow 0.2	25s → 0.5s	Syllabus 9702	B1	100
	(c) allow 81	$N \rightarrow 12 N$		B1	[1]
	ignore ni	umber of significant figures			
2	polymer: amorphous:	atoms / ions / particles in a regular arrangement / lattic long range order / orderly pattern (lattice) repeats itself long chain molecules / chains of monomers some cross-linking between chains / tangled chains disordered arrangement of molecules / atoms / particle any ordering is short-range <i>rks plus any other 2 marks</i>)	(1)(1)	B1 B1 B1 B2	[5]
	adjust c.r.o. t measure leng frequency = (assume b is	measured as s cm^{-1} , unless otherwise stated)		B1 B1 M1 A1	[4]
	·	is 'measure T , f = 1/ T ' then last two marks are lost) ble straight line drawn (touching every point)		B1	[1]
	()	nce fallen is not <i>d</i> distance fallen plus the diameter of the ball		C1 A1	[2]
	('d is not	measured to the bottom of the ball' scores 2/2)			
		neter: allow 1.5 ± 0.5 cm (accept one SF) cf from (a)		A1	[1]
	grad	lient = 4.76, ± 0.1 with evidence that origin has not been lient = $g/2$ 9.5 m s ⁻²	en used	C1 C1 A1	[3]

Pa	Page 3		Mark Scheme: Teachers' version Syllabus	· A .	ſ
			GCE A LEVEL – October/November 2010 9702	Dan	
(a)	(a) (i)		5.2	201	76.
	Page 3 Mark Scheme: Teachers' version Syllabus GCE A LEVEL – October/November 2010 9702 (a) (i) Fig. 5.2 (ii) Fig. 5.3 (b) kinetic energy increases from zero then decreases to zero				
(b)	kine	etic er	nergy increases from zero then decreases to zero	B1	[1]
(c)	(i)	ΔE_{P}	= $mg\Delta h / mgh$ = 94 × 10 ⁻³ × 9.8 × 2.6 × 10 ⁻² using g = 10 then −1	C1	
			= 0.024 J	A1	[2]
	(ii)	eithe	$er 0.024 = \frac{1}{2} k \times (2.6 \times 10^{-2})^2 or \frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 - \frac{1}{2}kd^2$ $0.012 = \frac{1}{2}k \times d^2 \qquad \qquad kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2$ $d = 0.018 m \qquad \qquad d = 0.018 m$	² C1 C1	
			d = 0.018 m $d = 0.018 m= 1.8 cm = 1.8 cm$	A1	[3]
(a)			o (or more) waves meet (at a point) t) displacement is (vector) sum of individual displacements	B1 B1	[2]
(b)	(i)	590	ax / D (if no formula given and substitution is incorrect then 0/3) × $10^{-9} = (1.4 \times 10^{-3} \times x) / 2.6$.1 mm	C1 C1 A1	[3]
	<i>.</i>				
	(ii)	1. 10	30° (allow π if rad stated)	A1	[1]
		in	t maximum, amplitude is 3.4 units and at minimum, 0.6 units tensity ~ amplitude ² allow $I ~ a^2$ atio = 3.4 ² / 0.6 ²	C1 C1	
			32	A1	[3]
(a)	(i)	path	: reasonable curve upwards between plates straight and at a tangent to the curve beyond the plates	B1 B1	[2]
	(ii)	1 . (F	=) E.g	B1	[1]
		2. (<i>t</i>	=) L / v	B1	[1]
(b)	(i)	syste prov	momentum of a system remains constant or total momentum of a em before a collision equals total momentum after collision ided no external force acts on the system not accept 'conserved' but otherwise correct statement gets 1/2)	M1 A1	[2]
	(ii)	(∆p =	=) <i>EqL / v</i> allow ecf from (a)(ii)	B1	[1]
	(iii)	eithe or	er charged particle is not an isolated system so law does not apply system is particle and 'plates' equal and opposite Δp on plates / so law applies	M1 A1 (M1 (A1)	,

		man		
	Page 4	Mark Scheme: Teachers' version Syllabus	er er	,
		GCE A LEVEL – October/November 2010 9702	Da	
8	<i>R</i> =	er $P = V^2 / R$ or $I = 1200 / 230$ or 5.22 $R = (230 \times 230) / 1200$ $Q = 230^2 / 1200$ or $R = 230 / 5.22$ $R = 44.1 \Omega$	M1 A0	bridge.com
		= <i>ρL / Α</i> = (1.7 × 10 ⁻⁸ × 9.2 × 2) / (π × {0.45 × 10 ⁻³ } ²) = 0.492Ω	C1 M1 A0	[2]
		= 230 /44.6 = (230 /44.6) ² × 44.1 = 1170 W Il credit for solution based on potential divider)	C1 C1 A1	[3]
	mor	power dissipated in the heater / smaller p.d. across heater / e power loss in cable / current lower le becomes heated / melts / two sensible suggestions, 1 each, max 2)	B1 B1	[2]
9	(a) <u>nucleus</u> emits α -particles or β -particles and/or γ -radiation to form a different / more stable nucleus		B1 B1	[2]
	(b) (i) fluct	tuations in count rate (not 'count rate is not constant')	B1	[1]
	(ii) no e	effect	B1	[1]
	(iii) if the eithe	e source is an α-emitter er α-particles stopped within source (and gain electrons)	B1	
	or	α -particles are helium <u>nuclei</u>	B1	[2]
	allov	w 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'		