UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papaCambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page	2		rk Scheme: Tea A LEVEL – Octo	<u>chers' version</u> ber/November 2	2010	Syllabus 9702	and a	r
				Section A			W. PapaCal.	2
(a) for	rce per i	unit mass	(ratio idea e	essential)			B1	orios
(b) gra		orrect curva om (<i>R</i> ,1.0g		other correct poi	int		M1 A1	[2]
(c) (i)			•	posite directions			M1	
	<i>or</i> so the	any other ere is a poir	sensible comme sensible comme at where it is zero for 2 marks)		eia streng	un	A1 A0	[2]
(ii)	GM _E / (6.0 × x = 54		$(D-x)^2$ × 10 ²²) = x^2 / (60	$(R_{\rm E}-x)^2$			C1 C1 A1	[3]
(iii)	graph	$g_{\rm E}$ and $g_{\rm M}$	east ⅔ distance to in opposite direc irvature (by eye)		urface		B1 M1 A1	[3]
(a) (i)	no for	ces (of attra	action or repulsic	n) between atom	ns / molec	ules / particle	s B1	[1]
(ii)		of kinetic an o random m		y of atoms / mole	ecules		M1 A1	[2]
(iii)		om) kinetic tential ener		s with temperatur	e		M1	
				ases internal ene	rgy)		A1	[2]
(b) (i)	zero						A1	[1]
(ii)	work	done = $p\Delta$	V $ imes$ 10 ⁵ $ imes$ 6 $ imes$ 10 ⁻⁴				C1	
		= 4.0 = 240		nny sign)			A1	[2]
(iii)		h		heeting of t	in			
	0	hange	work done / J	heating / J		e in internal ergy / J		

change	work done / J	neating / J	energy / J
$P \rightarrow Q$ $Q \rightarrow R$ $R \rightarrow P$	+240	600	-360
	0	+720	+720
	-840	+480	-360

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

Pa	ge 3		Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2010	Syllabus 9702	r
				°C2	X
(a)	(i)	resonal	nce		76.
	(ii)	amplitu	de 16mm <u>and</u> frequency 4.6Hz	Syllabus 9702 A1	105
(b)	(i)	a = (-)	$\omega^2 x$ and $\omega = 2\pi f$	C1	
			$x^{2} \times 4.6^{2} \times 16 \times 10^{-3}$ $3.4 \mathrm{ms^{-2}}$	C1 A1	[3]
	(ii)	F = ma		C1	
		= 15 = 2.0	i0 × 10 ^{−3} × 13.4 0 N	A1	[2]
(c)		-	'below' given line and never zero .6 Hz (or slightly less) and flatter	M1 A1	[2]
	l				[-]
(a)	cha	rge / pot	tential (difference) (<i>ratio must be clear</i>)	B1	[1]
(b)	(i)	V = Q /	$4\pi\varepsilon_0 r$	B1	[1]
	(ii)	C = Q / so C ∞	$V = 4\pi \varepsilon_0 r$ and $4\pi \varepsilon_0$ is constant r	M1 A0	[1]
(c)	(i)	r = C/4	$4\pi \varepsilon_0 r$ $\times 10^{-12}) / (4\pi \times 8.85 \times 10^{-12})$	C1 C1	
		= 6.1 ×			[3]
	(ii)		$7 = 6.8 \times 10^{-12} \times 220$		
		= 1	I.5 × 10 ^{−9} C	A1	[1]
(d)	(i)		$C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		
		= 83 V	<u>_</u>	A1	[1]
	(ii)	either	energy = $\frac{1}{2}CV^2$ $\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$	C1 C1	
			= $1.65 \times 10^{-7} - 6.2 \times 10^{-8}$ = 1.03×10^{-7} J	A1	[3]
		or	energy = $\frac{1}{2}QV$	(C1)	[~]
			$\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03 × 10 ⁻⁷ J	(C1) (A1)	

				2	
P	Page	4	Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2010	Syllabus 9702	<u>ir</u>
(a)) fie	eld into	Syllabus 9702 B1 2) B1 A0	mbr	
(b		orce du $\frac{1}{r}$	ue to magnetic field <u>provides</u> the centripetal force = <i>Bay</i>	B1 C1	
	B	3 = (2	$20 \times 1.66 \times 10^{-27} \times 1.40 \times 10^{5}) / (1.6 \times 10^{-19} \times 6.4 \times 10^{-2})$.454 T	²) B1 A0	[3]
(c)) (i) <u>ser</u>	nicircle with diameter greater than 12.8 cm	B1	[1]
	(ii) new	v flux density = $\frac{22}{20} \times 0.454$	C1	
			$B = 0.499 \mathrm{T}$	A1	[2]
(a)) (i) e.g.	. prevent flux losses / improve flux linkage	B1	[1]
	(ii)	e.m	a in core is changing n.f. / current (induced) <u>in core</u>	B1 B1	
		indu	uced current in core causes heating	B1	[3]
(b)) (i)		t value of the direct current producing same (mean) pow a resistor	ver / heating M1 A1	[2
	(ii)	<i>,</i> ,	ver in primary = power in secondary $I_{\rm P} = V_{\rm S} I_{\rm S}$	M1 A1	
(a)) (i) e.g.	. electron / particle diffraction	B1	[1
	(ii)) e.g.	. photoelectric effect	B1	[1
(b) (i	i) 6		A1	[1
	(ii)	$\lambda = 1$	ange in energy = 4.57×10^{-19} J hc / E	C1	
		= (6 = 4.	$6.63 imes 10^{-34} imes 3.0 imes 10^8)$ / ($4.57 imes 10^{-19}$) .4 $ imes 10^{-7}$ m	A1	[2
(a)			of a heavy nucleus (<i>not atom/nuclide</i>) (lighter) nuclei of <u>approximately same mass</u>	M1 A1	
(b) ¹ 0				L
1			(allow $\frac{4}{2}\alpha$)	M2	-
	-	Li		A1	[3
(c)			particles have kinetic energy	B1	
			f particles in the control rods is short / particles stopped etic energy in rods	B1	

Pa	ige 5	5	Mark Scheme: Teachers' version Syllabus	· A	[
			GCE AS/A LEVEL – October/November 2010 9702	Dac	
			Section B	191	76
(a)	(i)	non-i	nverting (amplifier)	N. PapaCall B1	70
	(ii)	(G =)	$1 + R_2 / R_1$	B1	[1]
(b)	(i)	gain	= 1 + 100 / 820	C1	
	()		ut = 17 mV	A1	[2]
	(ii)	(<i>R</i> ₂ / (1 + /	R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b)(i) and (b)(ii) R_1 / R_2) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 mark in (b)(ii) R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii) , (b)(i) and (b)(ii))	A1	[1]
0 (a)	(i)	dens	ity × <u>speed of wave</u> (in the medium)	B1	[1]
	(ii)	ρ = =	(7.0 × 10 ⁶) / 4100 1700 kg m ⁻³	A1	[1]
(b)	(i)	$I = I_{T}$	$_{\rm f}$ + $I_{\rm R}$	B1	[1]
. ,	.,		$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$	C1	
		•	= 0.001	A1	[2]
		2. α α	× 1	A1	[1]
(c)	eith or	(v r v	very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body	M1 M1 (M1) (M1) (A1)	[3]
1 (a)	(i)	unwa	anted random power / signal / energy	B1	[1]
	(ii)	loss	of (signal) power / energy	B1	[1]
(b)	(i)	eithe	<i>r</i> signal-to-noise ratio at mic. = $10 \lg (P_2 / P_1)$ = $10 \lg (\{2.9 \times 10^{-6}\} / \{3.4 \times 10^{-9}\})$	C1	
			= 29dB maximum length = (29 – 24) / 12 = 0.42 km = 420 m	A1 C1 A1	[4]
		or	signal-to-noise ratio at receiver = 10 lg (P_2 / P_1)	(C1)	
			at receiver, 24 = 10 lg($P / \{3.4 \times 10^{-9}\}$) $P = 8.54 \times 10^{-7}$ W power loss in cables = 10 lg($\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-7}\}$)	(A1) (C1)	
			= 5.3 dB length = 5.3 / 12 km = 440 m	(A1)	

Page 6	Ма	rk Scheme: Teachers' version	Syllabus	A er	,
	GCE AS/	A LEVEL – October/November 2010	9702	They a	
coup	an amplifier bled to the m eater amplifie	icrophone ers scores no mark)		PapaCan.	bilds
satellite i signal an at a diffe different e.g. of fre) (carrier wave) transmitted from Earth to satellite satellite receives greatly attenuated signal signal amplified and transmitted <u>back to Earth</u> at a different (carrier) frequency different frequencies prevent swamping of uplink signal e.g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) (<i>two B1 marks plus any two other for additional physics</i>)			B1 B1 B2	
(b) advantag	e.g.	because orbits are much lower whole Earth may be covered in several orbits / with network		M1 A1 (M1) (A1)	
aisadvar	nage: e.g.	<i>either</i> must be tracked <i>or</i> limited use in any one orbit more satellites required for continuous of	operation	M1 A1	[4]