WWW. Dalla

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus er
	GCE AS/A LEVEL – May/June 2011	9702

Section A

(a) (i) force proportional to product of masses В1 force inversely proportional to square of separation (ii) separation much greater than radius / diameter of Sun / planet **B1 (b)** (i) e.g. force or field strength $\propto 1/r^2$ potential $\propto 1/r$ **B1** [1] (ii) e.g. gravitational force (always) attractive **B1** electric force attractive or repulsive **B1** [2] 2 M1 (a) number of atoms of carbon-12 in 0.012kg of carbon-12 Α1 [2] **(b)** pV = NkT or pV = nRTC1 substitutes temperature as 298 K C1 either $1.1 \times 10^5 \times 6.5 \times 10^{-2} = N \times 1.38 \times 10^{-23} \times 298$ or $1.1 \times 10^5 \times 6.5 \times 10^{-2} = n \times 8.31 \times 298$ and $n = N / 6.02 \times 10^{23}$ C1 $N = 1.7 \times 10^{24}$ **A1** [4] 3 (a) acceleration / force proportional to displacement from a fixed point M1 acceleration / force (always) directed towards that fixed point / in opposite direction to displacement **A1** [2] **(b) (i)** $A \rho g / m$ is a constant and so acceleration proportional to x**B1** negative sign shows acceleration towards a fixed point / in opposite direction to displacement [2] **B1** (ii) $\omega^2 = (A \rho g / m)$ C1 C1 $(2 \times \pi \times 1.5)^2 = (\{4.5 \times 10^{-4} \times 1.0 \times 10^3 \times 9.81\} / m)$ C1 $m = 50 \, a$ **A1** [4] (a) work done in bringing unit positive charge M1 from infinity (to that point) Α1 [2] (b) (i) field strength is potential gradient **B1** [1] (ii) field strength proportional to force (on particle Q) B1 potential gradient proportional to gradient of (potential energy) graph **B**1 so force is proportional to the gradient of the graph **A0** [2]

Page 3	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2011	9702

	(c)	pote 5.1	ergy = $5.1 \times 1.6 \times 10^{-19}$ (J) ential energy = $Q_1Q_2 / 4\pi \varepsilon_0 r$ $\times 1.6 \times 10^{-19} = (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times r$ 2.8×10^{-10} m	C1 C1 C1 A1	Shidge Com
	(d)	(i)	work is got out as <i>x</i> decreases so opposite sign	M1 A1	[2]
		(ii)	energy would be doubled gradient would be increased	B1 B1	[2]
5	(a)	eith	ion (of space) where there is a force er on / produced by magnetic pole	M1	[0]
		or	on / produced by current carrying conductor / moving charge	A1	[2]
	(b)	(i)	force on particle is (always) normal to velocity / direction of travel speed of particle is constant	B1 B1	[2]
		(ii)	magnetic force provides the centripetal force $mv^2 / r = Bqv$ r = mv / Bq	B1 M1 A0	[2]
	(c)	(i)	direction from 'bottom to top' of diagram	B1	[1]
		(ii)	radius proportional to momentum	C1	
			ratio = 5.7 / 7.4 = 0.77 (answer must be consistent with direction given in (c)(i))	A1	[2]
6	(a)	(i)	to concentrate the (magnetic) flux / reduce flux losses	B1	[1]
		(ii)	changing flux (in core) induces current in core currents in core give rise to a heating effect	M1 A1	[2]
	(b)	(i)	e.m.f. induced proportional to rate of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	magnetic flux in phase with / proportional to e.m.f. / current in primary coil e.m.f. / p.d. across secondary proportional to rate of change of flux so e.m.f. of supply not in phase with p.d. across secondary	M1 M1 A0	[2]
	(c)	(i)	for same power (transmission), high voltage with low current with low current, less energy losses in transmission cables	B1 B1	[2]
		(ii)	voltage is easily / efficiently changed	B1	[1]

	Page 4	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2011	Syllabus er 9702
7	for a wav	ve, electron can 'collect' energy continuously ve, electron will always be emitted / will be emitted at all frequencies ufficiently long delay	M1 A1 A1
	(b) (i) eithe	er wavelength is longer than threshold wavelength	13

C1

M1

A1

(b) (i) either wavelength is longer than threshold wavelength or frequency is below the threshold frequency photon energy is less than work function or

В1 [1]

(ii) $hc/\lambda = \phi + E_{MAX}$ $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (240 \times 10^{-9}) = \phi + 4.44 \times 10^{-19}$ $\phi = 3.8 \times 10^{-19} \text{J} (allow 3.9 \times 10^{-19} \text{J})$

C1 Α1 [3]

(c) (i) photon energy larger so (maximum) kinetic energy is larger M1 Α1 [2]

(ii) fewer photons (per unit time) so (maximum) current is smaller

[2]

[1]

[1]

[2]

[2]

8 (a) (i) Fe shown near peak

A1

(ii) Zr shown about half-way along plateau

Α1 [1]

(iii) H shown at less than 0.4 of maximum height

A1

(b) (i) heavy / large nucleus breaks up / splits into two nuclei / fragments of approximately equal mass

Α1

M1

(ii) binding energy of nucleus = $B_E \times A$ binding energy of parent nucleus is less than sum of binding energies of fragments

B1

B1

Page 5	Mark Scheme: Teachers' version	Syllabus	-
	GCE AS/A LEVEL – May/June 2011	9702	

Section B

Section B					
9	(a)		ompare two potentials / voltages out depends upon which is greater	M1 A1	ridge
	(b)	(i)	resistance of thermistor = $2.5\mathrm{k}\Omega$ resistance of X = $2.5\mathrm{k}\Omega$	C1 A1	[2]
		(ii)	at 5 °C / at < 10 °C, $V^- > V^+$ so V_{OUT} is -9 V at 20 °C / at > 10 °C, $V^- < V^+$ and V_{OUT} is +9 V V_{OUT} switches between negative and positive at 10 °C (allow similar scheme if 20 °C treated first)	M1 A1 B1 B1	[4]
10	(a)	prod	duct of density (of medium) and speed of sound (in the medium)	B1	[1]
	(b)		ould be nearly equal to 1 er reflected intensity would be nearly equal to incident intensity	M1	
		<i>or</i> tran	coefficient for transmitted intensity = $(1 - \alpha)$ smitted intensity would be small	M1 A1	[3]
	(c)	(i)	$\alpha = (1.7 - 1.3)^2 / (1.7 + 1.3)^2$ = 0.018	C1 A1	[2]
		(ii)	attenuation in fat = $\exp(-48 \times 2x \times 10^{-2})$ $0.012 = 0.018 \exp(-48 \times 2x \times 10^{-2})$ x = 0.42 cm	C1 C1 A1	[3]
11	(a)		uency of carrier wave varies synchrony) with the displacement of the information signal	M1 A1	[2]
	(b)	(i)	5.0 V	A1	[1]
		(ii)	640 kHz	A1	[1]
		(iii)	560 kHz	A1	[1]
		(iv)	7000 (condone unit)	A1	[1]
12	(a)	e.g.	acts as 'return' for the signal shields inner core from noise / interference / cross-talk (any two sensible answers, 1 each, max 2)	B2	[2]
	(b)	e.g.	greater bandwidth less attenuation (per unit length) less noise / interference		
			(any two sensible answers, 1 each, max 2)	B2	[2]
	(c)	atte	nuation is $2.4 dB$ nuation = $10 lg(P_1/P_2)$ 0 = 1.7	C1 C1 A1	[3]