WWW. Pals

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			2.	
Page 2	Mark Scheme: Teachers' version	Syllabus	er	
	GCE AS/A LEVEL – October/November 2011	9702	12	٦

- 1 (a) scalar has magnitude/size, vector has magnitude/size and direction
 - (b) acceleration, momentum, weight (-1 for each addition or omission but stop at zero)

(c) (i) horizontally: $7.5\cos 40^{\circ} / 7.5\sin 50^{\circ} = 5.7(45) / 5.75$ not 5.8 N

A1 [1]

(ii) vertically: $7.5 \sin 40^{\circ} / 7.5 \cos 50^{\circ} = 4.8(2) N$ **A1** [1]

(d) either correct shaped triangle

- M1 **A1**
- correct labelling of two forces, three arrows and two angles correct resolving: $T_2 \cos 40^\circ = T_1 \cos 50^\circ$ or
- (B1)

 $T_1 \sin 50^\circ + T_2 \sin 40^\circ = 7.5$

(B1)

 $T_1 = 5.7(45)$ (N) $T_2 = 4.8 (N)$

Α1 A1

- (allow ± 0.2 N for scale diagram)
- 2 (a) 1. constant velocity / speed

B1 [1]

[4]

2. either constant / uniform decrease (in velocity/speed) constant rate of decrease (in velocity/speed)

B1 [1]

(b) (i) distance is area under graph for both stages

C1

- stage 1: distance $(18 \times 0.65) = 11.7$ (m)
- stage 2: distance = $(9 \times [3.5 0.65]) = 25.7$ (m)
- total distance = 37.(4) m (-1 for misreading graph)

Α1 [2]

- {for stage 2, allow calculation of acceleration (6.32 m s⁻²) and then $s = (18 \times 2.85) + \frac{1}{2} \times 6.32 (2.85)^2 = 25.7 \text{ m}$
- or $E_{K} = \frac{1}{2}mv^{2}$ $E_{K} = \frac{1}{2} \times 1250 \times (18)^{2}$ (ii) either F = maC1 a = (18 - 0)/(3.5 - 0.65)C1
 - or $F = \frac{1}{2} \times 1250 \times (18)^2 / 25.7 = 7900 \text{ N}$ $F = 1250 \times 6.3 = 7900 \,\mathrm{N}$ Α1
 - or initial momentum = 1250×18

[3] (C1)

F = change in momentum / time taken

(C1)

 $F = (1250 \times 18) / 2.85 = 7900$

(A1)

- (c) (i) stage 1: either half / less distance as speed is half / less
 - half distance as the time is the same or
 - sensible discussion of reaction time

- **B**1 [1]
- either same acceleration and $s = v^2 / 2a$ or v^2 is $\frac{1}{4}$ (ii) stage 2:
- **B1**

1/4 of the distance

B1 [2]

			2.	
Page 3	Mark Scheme: Teachers' version	Syllabus	er	
	GCE AS/A LEVEL – October/November 2011	9702	100	1

- (a) (i) power = work done per unit time / energy transferred per unit time / rate of 3 done
 - (ii) Young modulus = stress / strain

(b) (i) 1.
$$E = T / (A \times \text{strain})$$
 (allow strain = ε)
 $T = E \times A \times \text{strain} = 2.4 \times 10^{11} \times 1.3 \times 10^{-4} \times 0.001$
 $= 3.12 \times 10^{4} \text{ N}$

2.
$$T - W = ma$$

 $[3.12 \times 10^4 - 1800 \times 9.81] = 1800a$
 $a = 7.52 \text{ m s}^{-2}$

(ii) 1.
$$T = 1800 \times 9.81 = 1.8 \times 10^4 \text{ N}$$

[2]

[3]

2. potential energy gain =
$$mgh$$
 = $1800 \times 9.81 \times 15$

$$= 2.7 \times 10^{5} \text{ J}$$
(iii) $P = Fv$

$$= 1800 \times 9.81 \times 0.55$$

input power = $9712 \times (100/30) = 32.4 \times 10^3 \text{W}$

A1

(ii)
$$4.4 - 2.1 = I \times (1.8 + 5.5 + 2.3)$$

 $I = 0.24 \text{ A}$

[2]

(iii) arrow (labelled)
$$I$$
 shown anticlockwise

(iv) 1.
$$V = I \times R = 0.24 \times 5.5 = 1.3(2) \text{ V}$$

2.
$$V_A = 4.4 - (I \times 2.3) = 3.8(5) V$$

3. either
$$V_B = 2.1 + (I \times 1.8)$$
 or $V_B = 3.8 - 1.3$
= 2.5(3) V

Page 4	Mark Scheme: Teachers' version	Syllabus	er
	GCE AS/A LEVEL – October/November 2011	9702	123

5	(a)	transverse waves have vibrations that are perpendicular / normal to the direction of energy travel longitudinal waves have vibrations that are parallel to the direction of energy travel		B1	bridge	
	(b)	vibrations are in a single direction either applies to transverse waves			M1	
				mal to direction of wave energy travel mal to direction of wave propagation	A1	[2]
	(c)	(i)	1 . am	plitude = 2.8 cm	B1	[1]
			•	ase difference = 135° or 0.75π rad or $3/4\pi$ rad or 2.36 radians ree sf needed)		
			nur	merical value	M1	
			uni	t	A1	[2]
		(ii)	amplitud	de = 3.96 cm (4.0 cm)	A1	[1]
6	(a)	(i)	•	deflection electric field / force on α -particle	M0 A1	[1]
		/ii\			MO	
		(ii) greater deflection greater electric field / force on α -particle		A1	[1]	
	(b)	(i)	either	deflections in opposite directions because oppositely charged	M1 A1	
			or	β less deflection	(M1)	
				β has smaller charge	(A1)	[2]
		(ii)		er deflection	M1	[0]
			because	e larger mass	A1	[2]
		(iii)	β less d	leflection because higher speed	B1	[1]
	(c)	eith rati	er F= o= eithe	ma and $F = Eq$ or $a = Eq / m$ er $(2 \times 1.6 \times 10^{-19}) \times (9.11 \times 10^{-31})$ $(1.6 \times 10^{-19}) \times 4 \times (1.67 \times 10^{-27})$	C1	
			or	$(1.6 \times 10^{-6}) \times 4 \times (1.67 \times 10^{-6})$ [2e × 1 / 2000 u] / [e × 4u]	C1	
		rati	o = 1 /40	00 or 2.5×10^{-4} or 2.7×10^{-4}	A1	[3]